Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (9): 1142-1147.DOI: 10.6023/A23050194 Previous Articles Next Articles
Special Issue: 庆祝《化学学报》创刊90周年合辑
Article
投稿日期:
2023-05-01
发布日期:
2023-06-27
作者简介:
基金资助:
Received:
2023-05-01
Published:
2023-06-27
Contact:
*E-mail: About author:
Supported by:
Share
Kai Zhang, Xiaojun Wu. Room-Temperature Ferromagnetism in Two-Dimensional Janus Titanium Chalcogenides★[J]. Acta Chimica Sinica, 2023, 81(9): 1142-1147.
TiXY | ΔE/eV | a/nm | G.S | M/µB | Ef/eV |
---|---|---|---|---|---|
TiSH | –0.319 | 0.322 | HMFa | 0.84 | –0.233 |
TiSeH | –0.351 | 0.329 | HMFa | 0.87 | –0.244 |
TiTeH | –0.223 | 0.336 | BMSb | 0.88 | –0.487 |
TiSF | –0.147 | 0.328 | HMFa | 0.92 | –2.138 |
TiSeF | –0.117 | 0.335 | HMFa | 1.00 | –2.126 |
TiTeF | –0.107 | 0.349 | BMSb | 1.11 | –2.258 |
TiXY | ΔE/eV | a/nm | G.S | M/µB | Ef/eV |
---|---|---|---|---|---|
TiSH | –0.319 | 0.322 | HMFa | 0.84 | –0.233 |
TiSeH | –0.351 | 0.329 | HMFa | 0.87 | –0.244 |
TiTeH | –0.223 | 0.336 | BMSb | 0.88 | –0.487 |
TiSF | –0.147 | 0.328 | HMFa | 0.92 | –2.138 |
TiSeF | –0.117 | 0.335 | HMFa | 1.00 | –2.126 |
TiTeF | –0.107 | 0.349 | BMSb | 1.11 | –2.258 |
[1] |
Wolf, S.; Awschalom, D.; Buhrman, R.; Daughton, J.; Von Molnar, S.; Roukes, M.; Chtchelkanova, A. Y.; Treger, D. Science 2001, 294, 1488.
pmid: 11711666 |
[2] |
Fert, A. Rev. Mod. Phys. 2008, 80, 1517.
doi: 10.1103/RevModPhys.80.1517 |
[3] |
Zhang, Q.; Jiang, M. Y.; Liu, T. Y.; Zeng, Y. X.; Shi, S. W. Acta Chim. Sinica 2022, 80, 1351. (in Chinese)
doi: 10.6023/A22050212 |
(张琪, 江梦云, 刘天一, 曾意迅, 石胜伟, 化学学报, 2022, 80, 1351.)
doi: 10.6023/A22050212 |
|
[4] |
Li, X.; Yang, J. Chin. J. Chem. 2019, 37, 1021.
doi: 10.1002/cjoc.v37.10 |
[5] |
Ando, K. Science 2006, 312, 1883.
doi: 10.1126/science.1125461 |
[6] |
De Groot, R.; Mueller, F.; Van Engen, P.; Buschow, K. Phys. Rev. Lett. 1983, 50, 2024.
doi: 10.1103/PhysRevLett.50.2024 |
[7] |
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. Nature 2017, 546, 270.
doi: 10.1038/nature22391 |
[8] |
Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; Qiu, Z. Q.; Cava, R. J.; Louie, S. G.; Xia, J.; Zhang, X. Nature 2017, 546, 265.
doi: 10.1038/nature22060 |
[9] |
Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M.-H.; Batzill, M. Nat. Nanotechnol. 2018, 13, 289.
doi: 10.1038/s41565-018-0063-9 pmid: 29459653 |
[10] |
Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A. F. Nat. Mater. 2018, 17, 778.
doi: 10.1038/s41563-018-0149-7 |
[11] |
O’Hara, D. J.; Zhu, T.; Trout, A. H.; Ahmed, A. S.; Luo, Y. K.; Lee, C. H.; Brenner, M. R.; Rajan, S.; Gupta, J. A.; McComb, D. W. Nano Lett. 2018, 18, 3125.
doi: 10.1021/acs.nanolett.8b00683 |
[12] |
Kong, T.; Stolze, K.; Timmons, E. I.; Tao, J.; Ni, D.; Guo, S.; Yang, Z.; Prozorov, R.; Cava, R. J. Adv. Mater. 2019, 1808074.
|
[13] |
Lu, A.-Y.; Zhu, H.; Xiao, J.; Chuu, C.-P.; Han, Y.; Chiu, M.-H.; Cheng, C.-C.; Yang, C.-W.; Wei, K.-H.; Yang, Y. Nat. Nanotechnol. 2017, 12, 744.
doi: 10.1038/nnano.2017.100 |
[14] |
Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V. B.; Shi, L. ACS Nano 2017, 11, 8192.
doi: 10.1021/acsnano.7b03186 pmid: 28771310 |
[15] |
Er, D.; Ye, H.; Frey, N. C.; Kumar, H.; Lou, J.; Shenoy, V. B. Nano Lett. 2018, 18, 3943.
doi: 10.1021/acs.nanolett.8b01335 |
[16] |
Chen, W.; Qu, Y.; Yao, L.; Hou, X.; Shi, X.; Pan, H. J. Mater. Chem. A 2018, 6, 8021.
doi: 10.1039/C8TA01202D |
[17] |
Zhang, C.; Nie, Y.; Sanvito, S.; Du, A. Nano Lett. 2019, 19, 1366.
doi: 10.1021/acs.nanolett.8b05050 |
[18] |
Peng, R.; Ma, Y.; Zhang, S.; Huang, B.; Dai, Y. J. Phys. Chem. Lett. 2018, 9, 3612.
doi: 10.1021/acs.jpclett.8b01625 pmid: 29909617 |
[19] |
Wang, Z. J. Mater. Chem. C 2018, 6, 13000.
doi: 10.1039/C8TC04951C |
[20] |
Jena, N.; Rawat, A.; Ahammed, R.; Mohanta, M. K.; De Sarkar, A. J. Mater. Chem. A 2018, 6, 24885.
doi: 10.1039/C8TA08781D |
[21] |
Dong, L.; Lou, J.; Shenoy, V. B. ACS Nano 2017, 11, 8242.
doi: 10.1021/acsnano.7b03313 |
[22] |
Sun, Y.; Shuai, Z.; Wang, D. Nanoscale 2018, 10, 21629.
doi: 10.1039/C8NR08151D |
[23] |
Hu, T.; Jia, F.; Zhao, G.; Wu, J.; Stroppa, A.; Ren, W. Phys. Rev. B 2018, 97, 235404.
doi: 10.1103/PhysRevB.97.235404 |
[24] |
Wu, D.; Zhuo, Z.; Lv, H.; Wu, X. J. Phys. Chem. Lett. 2021, 12, 2905.
doi: 10.1021/acs.jpclett.1c00454 |
[25] |
Zhou, X.; Sun, X.; Zhang, Z.; Guo, W. J. Mater. Chem. C 2018, 6, 9675.
doi: 10.1039/C8TC03016B |
[26] |
Li, X.; Wu, X.; Li, Z.; Yang, J.; Hou, J. Nanoscale 2012, 4, 5680.
doi: 10.1039/c2nr31743e |
[27] |
Goodenough, J. B. Phys. Rev. 1955, 100, 564.
doi: 10.1103/PhysRev.100.564 |
[28] |
Anderson, P. W. Phys. Rev. 1950, 79, 350.
doi: 10.1103/PhysRev.79.350 |
[29] |
Kanamori, J. J. Phys. Chem. Solids 1959, 10, 87.
doi: 10.1016/0022-3697(59)90061-7 |
[30] |
Fong, C. Y.; Qian, M. C.; Liu, K.; Yang, L. H.; Pask, J. E. J. Nanosci. Nanotechnol. 2008, 8, 3652.
pmid: 19051923 |
[31] |
Jiang, P.; Li, L.; Liao, Z.; Zhao, Y.; Zhong, Z. Nano Lett. 2018, 18, 3844.
doi: 10.1021/acs.nanolett.8b01125 |
[32] |
Sivadas, N.; Okamoto, S.; Xu, X.; Fennie, C. J.; Xiao, D. Nano Lett. 2018, 18, 7658.
doi: 10.1021/acs.nanolett.8b03321 pmid: 30408960 |
[33] |
Xiong, Q.; Zhou, J.; Zhang, J.; Kitamura, T.; Li, Z. Phys. Chem. Chem. Phys. 2018, 20, 20988.
doi: 10.1039/C8CP02011F |
[34] |
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
doi: 10.1103/physrevb.54.11169 pmid: 9984901 |
[35] |
Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
doi: 10.1103/PhysRevB.59.1758 |
[36] |
Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
doi: 10.1103/PhysRevB.50.17953 |
[37] |
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328 |
[38] |
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207.
doi: 10.1063/1.1564060 |
[39] |
Dudarev, S.; Botton, G.; Savrasov, S.; Humphreys, C.; Sutton, A. Phys. Rev. B 1998, 57, 1505.
doi: 10.1103/PhysRevB.57.1505 |
[40] |
Klimeš, J.; Bowler, D. R.; Michaelides, A. J. Phys.: Condens. Matter 2009, 22, 022201.
doi: 10.1088/0953-8984/22/2/022201 |
[41] |
Klimeš, J.; Bowler, D. R.; Michaelides, A. Phys. Rev. B 2011, 83, 195131.
doi: 10.1103/PhysRevB.83.195131 |
[42] |
Togo, A.; Tanaka, I. Scr. Mater. 2015, 108, 1.
doi: 10.1016/j.scriptamat.2015.07.021 |
[43] |
Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
doi: 10.1103/physrevb.47.558 pmid: 10004490 |
[1] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[2] | Hairu Li, Ceng Zhang, Sidian Li. Study on the Regulation of Alkali-earth Metal Ben (n=1~3) on the Structure of B12 Clusters [J]. Acta Chimica Sinica, 2022, 80(7): 888-895. |
[3] | Rui Guo, Xing Wei, Moyun Cao, Yan Zhang, Yun Yang, Jibin Fan, Jian Liu, Ye Tian, Zekun Zhao, Li Duan. Optical and Tunable Electronic Properties of AlAs/InSe Van Der Waals Heterostructures [J]. Acta Chimica Sinica, 2022, 80(4): 526-534. |
[4] | Kai Qiu, Mingxia Yan, Shouwang Zhao, Shengli An, Wei Wang, Guixiao Jia. Theoretical Study on the Structural Stability and Oxygen Ion Oxidation of Al-doped Lithium-ion Battery Layered Cathode Li(Li0.17Ni0.17Al0.04Fe0.13Mn0.49)O2 [J]. Acta Chimica Sinica, 2021, 79(9): 1146-1153. |
[5] | Huan Liu, Li Li, Ping Li, Guangzhi Zhang, Xun Xu, Hao Zhang, Lingfang Qiu, Hui Qi, Shuwang Duo. In-situ Construction of 2D/3D ZnIn2S4/TiO2 with Enhanced Photocatalytic Performance [J]. Acta Chimica Sinica, 2021, 79(10): 1293-1301. |
[6] | Li Chen, Chen Fenghua, Ye Li, Li Wei, Yu Han, Zhao Tong. Preparation and Photocatalytic Hydrogen Production of B, N Co-doped In2O3/TiO2 [J]. Acta Chimica Sinica, 2020, 78(12): 1448-1454. |
[7] | Zhang Xuhan, Deng Bowen, Fan Haidong, Huang Wenhui, Zhang Yanwei. Photo-thermochemical CO2 Splitting Based on Zinc-germanium Binary Oxide [J]. Acta Chimica Sinica, 2020, 78(10): 1120-1126. |
[8] | Wu Miao Miao, Liu Shiqiang, Chen Hao, Wei Xuehu, Li Mingyang, Yang Zhibin, Ma Xiangdong. Superhalogen Substitutions in Cubic Halide Perovskite Materials for Solar Cells:A First-principles Investigation [J]. Acta Chim. Sinica, 2018, 76(1): 49-54. |
[9] | Chen Fangyuan, Qu Ning, Wu Qunyan, Zhang Hongxing, Shi Weiqun, Pan Qingjiang. Structures and Uranium-Uranium Multiple Bond of Binuclear Divalent Uranium Complex of Pyrrolic Schiff-base Macrocycle: a Relativistic DFT Probe [J]. Acta Chim. Sinica, 2017, 75(5): 457-463. |
[10] | Li Lei, Jia Guixiao, Wang Xiaoxia, Wu Tongwei, Song Xiwen, An Shengli. [1+1] and [2+1] Additions on a (5,5) Single-Walled Carbon Nanotube with V1~V4 Vacancies Based on Defect Curvature: A First Principles Study [J]. Acta Chim. Sinica, 2017, 75(3): 284-292. |
[11] | Zhao Zigang, Niu Yongqiang, Zhao Yang, Song Qinghua, Xin Ling, Lu Xiaoqing. First-Principles Theory Investigation on Structural and Photoelectronic Properties of Formamidinium Lead Halide Perovskites [J]. Acta Chim. Sinica, 2016, 74(8): 689-693. |
[12] | Zhao Zigang, Lu Xiaoqing, Li Ke, Wei Shuxian, Liu Xuefeng, Niu Kai, Guo Wenyue. First-Principles Theory Investigation on Structural and Photoelectronic Properties of Perovskites:Trigonal versus Hexagonal HC(NH2)2PbI3 [J]. Acta Chim. Sinica, 2016, 74(12): 1003-1008. |
[13] | Liu Ruiyuan, Sun Baoquan. Silicon-based Organic/inorganic Hybrid Solar Cells [J]. Acta Chim. Sinica, 2015, 73(3): 225-236. |
[14] | Wu Qisheng, Wang Zilu, Wang Jinlan. Strain Engineered Modulation on Graphene Doped with Boron, Nitrogen, Aluminum, Silicon and Phosphorus [J]. Acta Chim. Sinica, 2014, 72(12): 1233-1237. |
[15] | Pei Juan, Hao Yanzhong, Lv Haijun, Sun Bao, Li Yingpin, Wang Shangxin. Improving the Photovoltaic Performance of TiO2/P3HT Hybrid Solar Cell by Interfacial Modification [J]. Acta Chimica Sinica, 2014, 72(12): 1245-1250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||