Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (11): 1609-1623.DOI: 10.6023/A23070339 Previous Articles Next Articles
Review
投稿日期:
2023-07-15
发布日期:
2023-08-24
基金资助:
Jianqiang Chena,b, Gangguo Zhua(), Jie Wub,c()
Received:
2023-07-15
Published:
2023-08-24
Contact:
*E-mail: Supported by:
Share
Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates[J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623.
[1] |
(a) Ertl P.; Schuhmann T. J. Nat. Prod. 2019, 82, 1258.
doi: 10.1021/acs.jnatprod.8b01022 |
(b) Henkel T.; Brunne R. M.; Müller H.; Reichel F. Angew. Chem. Int. Ed. 1999, 38, 643.
doi: 10.1002/(ISSN)1521-3773 |
|
[2] |
For reviews, see: (a) Hatwig W. Tetrahedron 1983, 39, 2609.
doi: 10.1016/S0040-4020(01)91972-6 |
(b) Crich D.; Quintero L. Chem. Rev. 1989, 89, 1413.
doi: 10.1021/cr00097a001 |
|
[3] |
(a) Zhang Z.; Gong L.; Zhou X.-Y.; Yan S.-S.; Li J.; Yu D.-G. Acta Chim. Sinica 2019, 77, 783.. (in Chinese)
doi: 10.6023/A19060208 |
( 张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
doi: 10.6023/A19060208 |
|
(b) Chen J.-Q.; Tu X.; Tang Q.; Li K.; Xu L.; Wang S.; Ji M.; Li Z.; Wu J. Nat. Commun. 2021, 12, 5328.
doi: 10.1038/s41467-021-25628-x |
|
(c) Ji M.; Xu L.; Luo X.; Jiang M.; Wang S.; Chen J.; Wu J. Org. Chem. Front. 2021, 8, 6704.
doi: 10.1039/D1QO01368H |
|
(d) Yang M.; Ye B.; Chen J.; Wu J. Acta Chim. Sinica 2022, 80, 11.. (in Chinese)
doi: 10.6023/A21100457 |
|
( 杨民, 叶柏柏, 陈健强, 吴劼, 化学学报, 2022, 80, 11.)
doi: 10.6023/A21100457 |
|
(e) Chen J.-Q.; Tu X.; Qin B.; Huang S.; Zhang J.; Wu J. Org. Lett. 2022, 24, 642.
doi: 10.1021/acs.orglett.1c04082 |
|
(f) Chen J.-Q.; Chen Q.; Chen B.; Wu J. Org. Chem. Front. 2023, 10, 2018.
doi: 10.1039/D3QO00213F |
|
(g) Hou H.; Cheng Y.; Chen B.; Tung C.; Wu L. Chin. J. Org. Chem. 2023, 43, 1012.. (in Chinese)
doi: 10.6023/cjoc202211048 |
|
( 侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠, 有机化学, 2023, 43, 1012.)
doi: 10.6023/cjoc202211048 |
|
[4] |
(a) Zheng X.; Dai X.-J.; Yuan H.-Q.; Ye C.-X.; Ma J.; Huang P.-Q. Angew. Chem. Int. Ed. 2013, 52, 3494.
doi: 10.1002/anie.201210088 pmid: 23420540 |
(b) Xie H.; Guo J.; Wang Y.-Q.; Wang K.; Guo P.; Su P.-F.; Wang X.; Shu X.-Z. J. Am. Chem. Soc. 2020, 142, 16787.
doi: 10.1021/jacs.0c07492 pmid: 23420540 |
|
(c) Pang X.; Su P.-F.; Shu X.-Z. Acc. Chem. Res. 2022, 55, 2491.
doi: 10.1021/acs.accounts.2c00381 pmid: 23420540 |
|
[5] |
(a) Nguyen J. D.; Matsuura B. S.; Stephenson C. R. J. J. Am. Chem. Soc. 2014, 136, 1218.
doi: 10.1021/ja4113462 pmid: 29400958 |
(b) Nacsa E. D.; MacMillan D. W. C. J. Am. Chem. Soc. 2018, 140, 3322.
doi: 10.1021/jacs.7b12768 pmid: 29400958 |
|
(c) Zhao G.; Yao W.; Mauro J. N.; Ngai M.-Y. J. Am. Chem. Soc. 2021, 143, 1728.
doi: 10.1021/jacs.0c11209 pmid: 29400958 |
|
[6] |
(a) Stache E. E.; Ertel A. B.; Rovis T.; Doyle A. G. ACS Catal. 2018, 8, 11134.
doi: 10.1021/acscatal.8b03592 pmid: 31367474 |
(b) Hu X.-Q.; Hou Y.-X.; Liu Z.-K.; Gao Y. Org. Chem. Front. 2020, 7, 2319.
doi: 10.1039/D0QO00643B pmid: 31367474 |
|
(c) Shao X.; Zheng Y.; Ramadoss V.; Tian L.; Wang Y. Org. Biomol. Chem. 2020, 18, 5994.
doi: 10.1039/D0OB01083A pmid: 31367474 |
|
(d) Guo H.-M.; Wu X. Nat. Commun. 2021, 12, 5365.
doi: 10.1038/s41467-021-25702-4 pmid: 31367474 |
|
[7] |
(a) Dong Z.; MacMillan D. W. C. Nature 2021, 598, 451.
doi: 10.1038/s41586-021-03920-6 pmid: 35786873 |
(b) Sakai H. A.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 6185.
doi: 10.1021/jacs.2c02062 pmid: 35786873 |
|
(c) Intermaggio N. E.; Millet A.; Davis D. L.; MacMillan D. W. C. J. Am. Chem. Soc. 2022, 144, 11961.
doi: 10.1021/jacs.2c04807 pmid: 35786873 |
|
[8] |
(a) Barton D. H. R.; Crich D. Tetrahedron Lett. 1985, 26, 757.
doi: 10.1016/S0040-4039(00)89129-7 |
(b) Barton D. H. R.; Crich D.; Kretzschmar G. J. Chem. Soc., Perkin Trans. 1 1986, 39.
|
|
[9] |
Lackner G. L.; Quasdorf K. W.; Overman L. E. J. Am. Chem. Soc. 2013, 135, 15342.
doi: 10.1021/ja408971t |
[10] |
Lackner G. L.; Quasdorf K. W.; Pratsch G.; Overman L. E. J. Org. Chem. 2015, 80, 6012.
doi: 10.1021/acs.joc.5b00794 |
[11] |
Gao C.; Li J.; Yu J.; Yang H.; Fu H. Chem. Commun. 2016, 52, 7292.
doi: 10.1039/C6CC01632D |
[12] |
Chen X.; Luo X.; Peng X.; Guo J.; Zai J.; Wang P. Chem. Eur. J. 2020, 26, 3226.
doi: 10.1002/chem.v26.15 |
[13] |
(a) Nawrat C. C.; Jamison C. R.; Slutskyy Y.; MacMillan D. W. C.; Overman L. E. J. Am. Chem. Soc. 2015, 137, 11270.
doi: 10.1021/jacs.5b07678 |
(b) Nawrat C. C.; Jamison C. R.; Slutskyy Y.; MacMillan D. W. C.; Overman L. E. J. Am. Chem. Soc. 2016, 138, 1724.
doi: 10.1021/jacs.6b00456 |
|
[14] |
Lowry M. S.; Goldsmith J. L.; Slinker J. D.; Rohl R.; Pascal R. A.; Malliaras G. G.; Bernhard S. Chem. Mater. 2005, 17, 5712.
doi: 10.1021/cm051312+ |
[15] |
Slutskyy Y.; Jamison C. R.; Zhao P.; Lee J.; Rhee Y. H.; Overman L. E. J. Am. Chem. Soc. 2017, 139, 7192.
doi: 10.1021/jacs.7b04265 pmid: 28514145 |
[16] |
Garnsey M. R.; Slutskyy Y.; Jamison C. R.; Zhao P.; Lee J.; Rhee Y. H.; Overman L. E. J. Org. Chem. 2018, 83, 6958.
doi: 10.1021/acs.joc.7b02458 |
[17] |
Allred T. K.; Dieskau A. P.; Zhao P.; Lackner G. L.; Overman L. E. Angew. Chem. Int. Ed. 2020, 59, 6268.
doi: 10.1002/anie.201916753 pmid: 31965671 |
[18] |
Allred T. K.; Dieskau A. P.; Zhao P.; Lackner G. L.; Overman L. E. J. Org. Chem. 2020, 85, 15532.
doi: 10.1021/acs.joc.0c02273 pmid: 33197184 |
[19] |
Abbas S. Y.; Zhao P.; Overman L. E. Org. Lett. 2018, 20, 868.
doi: 10.1021/acs.orglett.7b04034 |
[20] |
Pitre S. P.; Muuronen M.; Fishman D. A.; Overman L. E. ACS Catal. 2019, 9, 3413.
doi: 10.1021/acscatal.9b00405 |
[21] |
Dong J.; Wang Z.; Wang X.; Song H.; Liu Y.; Wang Q. J. Org. Chem. 2019, 84, 7532.
doi: 10.1021/acs.joc.9b00972 |
[22] |
Lipp B.; Nauth A. M.; Opatz T. J. Org. Chem. 2016, 81, 6875.
doi: 10.1021/acs.joc.6b01215 |
[23] |
Iwai K.; Takemura F.; Furue M.; Nozakura S.-I. Bull. Chem. Soc. Jpn. 1984, 57, 763.
doi: 10.1246/bcsj.57.763 |
[24] |
Zuo Z.; MacMillan D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.
doi: 10.1021/ja501621q |
[25] |
Amos S. G. E.; Cavalli D.; Vaillant F. L.; Waser J. Angew. Chem. Int. Ed. 2021, 60, 23827.
doi: 10.1002/anie.v60.44 |
[26] |
Li M.; Liu T.; Li J.; He H.; Dai H.; Xie J. J. Org. Chem. 2021, 86, 12386.
doi: 10.1021/acs.joc.1c01356 |
[27] |
Luo J.; Zhang J. ACS Catal. 2016, 6, 873.
doi: 10.1021/acscatal.5b02204 |
[28] |
Zhang X.; MacMillan D. W. C. J. Am. Chem. Soc. 2016, 138, 13862.
doi: 10.1021/jacs.6b09533 |
[29] |
Guo L.; Song F.; Zhu S.; Li H.; Chu L. Nat. Commun. 2018, 9, 4543.
doi: 10.1038/s41467-018-06904-9 |
[30] |
(a) Wang X.; Chen Y.; Liang P.; Chen J.-Q.; Wu J. Org. Chem. Front. 2022, 9, 4328.
doi: 10.1039/D2QO00741J |
(b) Chen M.; Sun W.; Yang J.; Yuan L.; Chen J.; Wu J. Green Chem. 2023, 25, 3857.
doi: 10.1039/D3GC01059G |
|
[31] |
Guo L.; Tu H.-Y.; Zhu S.; Chu L. Org. Lett. 2019, 21, 4771.
doi: 10.1021/acs.orglett.9b01658 |
[32] |
Li H.; Guo L.; Feng X.; Huo L.; Zhu S.; Chu L. Chem. Sci. 2020, 11, 4904.
doi: 10.1039/D0SC01471K |
[33] |
Su J. Y.; Grünenfelder D. C.; Takeuchi K.; Reisman S. E. Org. Lett. 2018, 20, 4912.
doi: 10.1021/acs.orglett.8b02045 |
[34] |
Brioche J. Tetrahedron Lett. 2018, 59, 4387.
doi: 10.1016/j.tetlet.2018.10.063 |
[35] |
Gonzalez-Esguevillas M.; Miró J.; Jeffrey J. L.; MacMillan D. W. C. Tetrehedron 2019, 75, 4222.
doi: 10.1016/j.tet.2019.05.043 |
[36] |
Troyano J. A.; Ballaschk F.; Jaschinski M.; Özkaya Y.; Gómez-Suárez A. Chem. Eur. J. 2019, 25, 14054.
doi: 10.1002/chem.v25.62 |
[37] |
Vincent É.; Brioche J. Eur. J. Org. Chem. 2021, 2421.
|
[38] |
Wang Q.; Yue L.; Bao Y.; Wang Y.; Kang D.; Gao Y.; Yuan Z. J. Org. Chem. 2022, 87, 8237.
doi: 10.1021/acs.joc.2c00664 |
[39] |
Yan X. B.; Li C.-L.; Jin W.-J.; Guo P.; Shu X.-Z. Chem. Sci. 2018, 9, 4529.
doi: 10.1039/C8SC00609A |
[40] |
Ye Y.; Chen H.; Sessler J. L.; Gong H. J. Am. Chem. Soc. 2019, 141, 820.
doi: 10.1021/jacs.8b12801 |
[41] |
Gao M.; Sun D.; Gong H. Org. Lett. 2019, 21, 1645.
doi: 10.1021/acs.orglett.9b00174 |
[42] |
Ye Y.; Chen H.; Yao K.; Gong H. Org. Lett. 2020, 22, 2070.
doi: 10.1021/acs.orglett.0c00561 |
[43] |
Chen H.; Ye Y.; Tong W.; Fang J.; Gong H. Chem. Commun. 2020, 56, 454.
doi: 10.1039/C9CC07072A |
[44] |
Ye Y.; Ma G.; Yao K.; Gong H. Synlett 2021, 32, 1625.
doi: 10.1055/a-1328-0352 |
[45] |
Friese F. W.; Studer A. Angew. Chem. Int. Ed. 2019, 58, 9561.
doi: 10.1002/anie.v58.28 |
[46] |
Ma G.; Chen C.; Talukdar S.; Zhao X.; Lei C.; Gong H. Chem. Commun. 2020, 56, 10219.
doi: 10.1039/D0CC04776G |
[47] |
Guo P.; Wang K.; Jin W.-J.; Xie H.; Qi L.; Liu X.-Y.; Shu X.-Z. J. Am. Chem. Soc. 2021, 143, 513.
doi: 10.1021/jacs.0c12462 |
[48] |
Chen Y.; Wang F.; Liu B.-X.; Rao W.-D.; Wang S.-Y. Org. Chem. Front. 2022, 9, 731.
doi: 10.1039/D1QO01614H |
[49] |
Zhuo J.; Zhu C.; Wu J.; Li Z.; Li C. J. Am. Chem. Soc. 2022, 144, 99.
doi: 10.1021/jacs.1c11623 |
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[3] | Guoqing Cui, Yiyang Hu, Yingjie Lou, Mingxia Zhou, Yuming Li, Yajun Wang, Guiyuan Jiang, Chunming Xu. Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols [J]. Acta Chimica Sinica, 2023, 81(8): 1081-1100. |
[4] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[5] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[6] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[7] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[8] | Liu Lujie, Zhang Jian, Wang Liang, Xiao Fengshou. Heterogeneous Catalysts for Selective Hydrogenolysis of Biomass-derived Polyols★ [J]. Acta Chimica Sinica, 2023, 81(5): 533-547. |
[9] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[10] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[11] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[12] | Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※ [J]. Acta Chimica Sinica, 2022, 80(6): 827-838. |
[13] | Heng Shu, Yide-Rigen Bao, Yong Na. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Selectively into 2,5-Diformylfuran with CdS Nanotube [J]. Acta Chimica Sinica, 2022, 80(5): 607-613. |
[14] | Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As) [J]. Acta Chimica Sinica, 2022, 80(4): 510-516. |
[15] | Pan An, Qinghui Zhang, Zhuang Yang, Jiaxing Wu, Jiaying Zhang, Yajun Wang, Yuming Li, Guiyuan Jiang. Research Progress of Solar Hydrogen Production Technology under Double Carbon Target [J]. Acta Chimica Sinica, 2022, 80(12): 1629-1642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||