有机化学 ›› 2023, Vol. 43 ›› Issue (2): 503-525.DOI: 10.6023/cjoc202206006 上一篇 下一篇
综述与进展
陈东平†, 杨春红†, 李明, 赵国孝, 王文鹏, 王喜存*(), 权正军*()
收稿日期:
2022-06-06
修回日期:
2022-08-30
发布日期:
2022-10-24
作者简介:
基金资助:
Dongping Chen†, Chunhong Yang†, Ming Li, Guoxiao Zhao, Wenpeng Wang, Xicun Wang(), Zhengjun Quan()
Received:
2022-06-06
Revised:
2022-08-30
Published:
2022-10-24
Contact:
*E-mail: About author:
Supported by:
文章分享
三组分反应具有操作简单、反应效率高等优势, 契合“原子经济、绿色环保”等原则. 目前, 芳炔参与的无过渡金属催化的芳基化反应主要分为以下三种类型: (1)直接芳基化反应; (2)基于σ-键或π-键的芳炔插入反应; (3)芳炔参与的三组分反应. 相比于发展较为成熟的直接芳基化反应和基于σ-键或π-键的芳炔插入反应, 芳炔参与的三组分反应机理尚不清楚, 相关的综述也较为少见. 为了科研工作者方便查阅、了解芳炔参与的三组分反应, 对近年来芳炔参与的芳基化三组分反应研究进展进行综述.
陈东平, 杨春红, 李明, 赵国孝, 王文鹏, 王喜存, 权正军. 芳炔参与的三组分芳基化反应进展[J]. 有机化学, 2023, 43(2): 503-525.
Dongping Chen, Chunhong Yang, Ming Li, Guoxiao Zhao, Wenpeng Wang, Xicun Wang, Zhengjun Quan. Recent Progress on Arylation with Aryne through Three-Component Reaction[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 503-525.
[1] |
(a) Demmer, C. S.; KrogsgaardLarsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
doi: 10.1021/cr2002646 pmid: 30090280 |
(b) Montchamp, J. L. Acc. Chem. Res. 2014, 47, 77.
doi: 10.1021/ar400071v pmid: 30090280 |
|
(c) Zhang, J.; Ding, D.; Wei, Y.; Xu, H. Chem. Sci. 2016, 7, 2870.
doi: 10.1039/c5sc04848f pmid: 30090280 |
|
[2] |
(a) Otzen, T.; Wempe, E. G.; Kunz, B.; Seydel, J. K. J. Med. Chem. 2004, 47, 240.
doi: 10.1021/jm030931w pmid: 25144663 |
(b) Zhang, K.; Xu, X.; Qing, F. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
doi: 10.6023/cjoc201501017 pmid: 25144663 |
|
(张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
doi: 10.6023/cjoc201501017 pmid: 25144663 |
|
(c) Lee, C. F.; Liu, Y. C.; Badsara, S. S. Chem.-Asian J. 2014, 9, 706.
doi: 10.1002/asia.201301500 pmid: 25144663 |
|
(d) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
doi: 10.1021/cr500235v pmid: 25144663 |
|
[3] |
(a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
doi: 10.1021/cr020049i |
(b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
doi: 10.1021/ar800036s |
|
[4] |
(a) Wang, Y.; Wu. M.; Ding, Y. Chin. J. Org. Chem. 2010, 30, 757. (in Chinese)
|
(王勇, 吴梅, 丁贻祥, 有机化学, 2010, 30, 757.)
|
|
(b) Xu, Q.; Jia, X.; Li, X.; Sun, Q.; Zhou, Y.; Yin, S.; Han, L. Chin. J. Org. Chem. 2014, 34, 1340. (in Chinese)
doi: 10.6023/cjoc201403048 |
|
(徐清, 贾小娟, 李晓慧, 孙清, 周永波, 尹双凤, 韩立彪, 有机化学, 2014, 34, 1340.)
doi: 10.6023/cjoc201403048 |
|
(c) Jablonkai, E.; Keglevich, G. Curr. Org. Synth. 2014, 11, 429.
doi: 10.2174/15701794113109990066 |
|
(d) Jablonkai, E.; Keglevich, G. Org. Prep. Proced. Int. 2014, 46, 281.
doi: 10.1080/00304948.2014.922376 |
|
[5] |
(a) Yang, M.; Pei, J.; Yan, G.; Weng, Q. Chin. J. Org. Chem. 2013, 33, 343. (in Chinese)
pmid: 23252771 |
(杨明华, 裴吉, 严国兵, 翁秋月, 有机化学, 2013, 33, 343.)
doi: 10.6023/cjoc201209008 pmid: 23252771 |
|
(b) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 188.
doi: 10.1021/ol303248h pmid: 23252771 |
|
(c) Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Mascitti, V.; Toste, F. D. Angew. Chem., Int. Ed. 2014, 53, 4404.
doi: 10.1002/anie.201400037 pmid: 23252771 |
|
(d) RichardsTaylor, C. S.; Blakemore, D. C.; Willis, M. C. Chem. Sci. 2014, 52, 12679.
pmid: 23252771 |
|
[6] |
(a) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2003, 42, 502.
doi: 10.1002/anie.200390151 |
(b) Okuma, K. Heterocycles 2012, 85, 515.
doi: 10.3987/REV-11-724 |
|
(c) Bhojgude, S. S.; Biju, A. T. Angew. Chem., Int. Ed. 2012, 51, 1520.
doi: 10.1002/anie.201106984 |
|
(d) Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2, 116.
doi: 10.1002/ajoc.201200142 |
|
(e) Modha, S. G.; Mehta, V. P.; VanderEycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
doi: 10.1039/c3cs60041f |
|
[7] |
Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211.
doi: 10.1246/cl.1983.1211 |
[8] |
Matsuzawa, T.; Yoshida, S.; Hosoya, T. Tetrahedron Lett. 2018, 59, 4197.
doi: 10.1016/j.tetlet.2018.10.031 |
[9] |
(a) Chen, L.; Zhang, C.; Wen, C.; Zhang, K.; Liu, W.; Chen, Q. Catal. Commun. 2015, 65, 81.
doi: 10.1016/j.catcom.2015.02.029 |
(b) Chen, Q.; Zhang, C.; Du, Z.; Chen, H.; Zhang, K. Tetrahedron Lett. 2015, 56, 2094.
doi: 10.1016/j.tetlet.2015.03.005 |
|
(c) Wen, C.; Chen, Q.; He, Z.; Yan, X.; Zhang, C.; Du, Z.; Zhang, K. Tetrahedron Lett. 2015, 56, 5470.
doi: 10.1016/j.tetlet.2015.08.019 |
|
(d) Chen, Q.; Yan, X.; Du, Z.; Zhang, K.; Wen, C. J. Org. Chem. 2016, 81, 276.
doi: 10.1021/acs.joc.5b02308 |
|
(e) Chen, Q.; Yan, X.; Wen, C.; Zeng, J.; Huang, Y.; Liu, X.; Zhang, K. J. Org. Chem. 2016, 81, 9476.
doi: 10.1021/acs.joc.6b01776 |
|
(f) Huang, Y. T.; Chen, Q. Chin. J. Org. Chem. 2020, 40, 4087. (in Chinese)
doi: 10.6023/cjoc202005047 |
|
(黄远婷, 陈迁, 有机化学, 2020, 40, 4087.)
doi: 10.6023/cjoc202005047 |
|
(g) Shi, J. R.; Li, L. G.; Li, Y. Chem. Rev. 2021, 121, 3892.
doi: 10.1021/acs.chemrev.0c01011 |
|
(h) Kashmiri, N.; Pranjal, G. Synlett 2020, 31, 750.
doi: 10.1055/s-0039-1690824 |
|
[10] |
(a) Sourav, G.; Daesung, L. Synth. Catal. 2021, 363, 657.
doi: 10.1002/adsc.202001237 pmid: 33200153 |
(b) Kashmiri, N.; Pranjal, G. Org. Biomol. Chem. 2020, 18, 9549.
doi: 10.1039/d0ob01988g pmid: 33200153 |
|
[11] |
Yoshida, S.; Hosoya, T. Chem. Lett. 2013, 42, 583.
doi: 10.1246/cl.130116 |
[12] |
Bhunia, A.; Kaicharla, T.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2014, 50, 11389.
doi: 10.1039/C4CC05420B |
[13] |
Bhunia, A.; Roy, T.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2014, 16, 5132.
doi: 10.1021/ol502490t pmid: 25215924 |
[14] |
Bhattacharjee, S.; Raju, A.; Gaykar, R. N.; Gonnade, R. G.; Roy, T.; Biju, A. T. J. Org. Chem. 2020, 15, 2203.
|
[15] |
Xie, P.; Yang, S.; Guo, Y.; Cai, Z.; Dai, B.; He, L. J. Org. Chem. 2020, 85, 8872.
doi: 10.1021/acs.joc.0c00745 |
[16] |
Huang, Y. T.; Chen, Q. J. Org. Chem. 2021, 86, 7010.
doi: 10.1021/acs.joc.1c00550 |
[17] |
Jin, J. H.; Kim, J.; Han, S. J. Org. Lett. 2022, 24, 2192.
doi: 10.1021/acs.orglett.2c00515 |
[18] |
Liu, F. L.; Chen, J. R.; Zou, Y. Q.; Wei, Q.; Xiao, W. J. Org. Lett. 2014, 16, 3768.
doi: 10.1021/ol501638x |
[19] |
Hazarika, H.; Neog, K.; Sharma, A.; Das, B.; Gogoi, P. J. Org. Chem. 2019, 84, 5846.
doi: 10.1021/acs.joc.9b00090 pmid: 30943034 |
[20] |
Lou, M. M.; Wang, H.; Li, Z. Q.; Guo, X. S.; Zhang, F. G.; Wang, B. J. Org. Chem. 2016, 81, 5915.
doi: 10.1021/acs.joc.6b00760 |
[21] |
Qiu, D.; Gu, R.; Wang, J.; Shi, J.; Li, Y. J. Am. Chem. Soc. 2016, 138, 10814.
doi: 10.1021/jacs.6b06981 |
[22] |
Dai, L.; Tan, M.; Lan, Y.; Li, Y. J. Am. Chem. Soc. 2021, 143, 10530.
doi: 10.1021/jacs.1c04389 |
[23] |
Hazaria, H.; Gogoi, P. Org. Biomol. Chem. 2020, 18, 2727.
doi: 10.1039/D0OB00275E |
[24] |
Arbuzov, B. A. Pure Appl. Chem. 1964, 9, 307.
doi: 10.1351/pac196409020307 |
[25] |
Xu, H. D.; Cai, M. Q.; He, W. J.; Hu, W. H.; Shen, M. H. RSC Adv. 2014, 4, 7623.
doi: 10.1039/C3RA47206J |
[26] |
(a) Lin, W.; Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44, 4258.
doi: 10.1002/anie.200500443 |
(b) Yoshida, S.; Hosoya, T. Tetrahedron Lett. 2018, 59, 4197.
doi: 10.1016/j.tetlet.2018.10.031 |
|
(c) Fan, R.; Tan, C.; Liu, Y. G.; Zhao, X. W.; Tian, J. J.; Yoshidab, H. Chin. Chem. Lett. 2021, 32, 299
doi: 10.1016/j.cclet.2020.06.003 |
|
[27] |
Peng, X. L.; Ma, C.; Xu, Z. H. Org. Lett. 2016, 18. 4154.
|
[28] |
Zeng, Y.; Hu, J. B. Org. Lett. 2016, 18, 856.
doi: 10.1021/acs.orglett.6b00142 |
[29] |
Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012. 112. 3550.
|
[30] |
Zheng, T.; Tan, J.; Fan, R.; Su, S.; Liu, B.; Tan, C.; Xu, K. Chem. Commun. 2018, 54, 1303.
doi: 10.1039/C7CC08553B |
[31] |
Fan, R.; Liu, B.; Zheng, T.; Xu, K.; Tan, C.; Zeng, T.; Su, S.; Tan, J. Chem. Commun. 2018, 54, 7081.
doi: 10.1039/C8CC03766C |
[32] |
Jian, H.; Wang, Q.; Wang, W. H.; Li, Z. J.; Gu, C. Z.; Dai, B.; He, L. Tetrahedron 2018, 74, 2876.
doi: 10.1016/j.tet.2018.04.072 |
[33] |
Gaykar, R.; Guin, A.; Bhattacharjee, S.; Biju, A. T. Org. Lett. 2019, 21, 9613.
doi: 10.1021/acs.orglett.9b03789 pmid: 31724871 |
[34] |
Subrata, B.; Akkattu, T.; Biju, A. T. Org. Lett. 2020, 22, 9097.
doi: 10.1021/acs.orglett.0c03494 |
[35] |
Hu, Y. F.; Huang, Y. T.; Zhao, X.; Li, X. W.; Chen, Q. Org. Biomol. Chem. 2021, 19, 7066.
doi: 10.1039/D1OB01229K |
[36] |
Garima, J.; Biju, A. T. Org. Lett. 2021, 23, 9083.
doi: 10.1021/acs.orglett.1c03378 |
[37] |
Meng, D. P.; Ni, C. F; Zhou, M.; Li, Y.; Hu, J. B. Chem.-Eur. J. 2022, 28, e202104395.
|
[38] |
Okuma, K.; Hino, H.; Sou, A.; Nagahora, N.; Shioji, K. Chem. Lett. 2009, 38, 1030.
doi: 10.1246/cl.2009.1030 |
[39] |
Okuma, K.; Fukuzaki, Y.; Nojima, A.; Shioji, K.; Yokomori, Y. Tetrahedron Lett. 2008, 49, 3063.
doi: 10.1016/j.tetlet.2008.03.058 |
[40] |
Okuma, K.; Fukuzaki, Y.; Shioji, K.; Yokomori, Y. Bull. Chem. Soc. Ethiop. 2010, 83, 1238.
|
[41] |
Yoshida, H.; Asatsu, Y.; Mimura, Y.; Ito, Y.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed. 2011, 50, 9676.
doi: 10.1002/anie.201104858 |
[42] |
Thangaraj, M.; Bhojgude, S. S.; Mane, M. V.; Biju, A. T. Chem. Commun. 2016, 52, 1665.
doi: 10.1039/C5CC08307A |
[43] |
Li, P.; Wu, C.; Zhao, J.; Li, Y.; Xue, W.; Shi, F. Can. J. Chem. 2013, 91, 43.
doi: 10.1139/cjc-2012-0199 |
[44] |
Zhou, C.; Wang, J.; Jin, J.; Lu, P.; Wang, Y. Eur. J. Org. Chem. 2014, 14, 1832.
|
[45] |
Liu, F.; Yang, H.; Hu, X.; Jiang, G. Org. Lett. 2014, 16, 6408.
doi: 10.1021/ol503224u |
[46] |
Sharma, A.; Gogoi, P. ChemistrySelect 2017, 2, 11801.
doi: 10.1002/slct.201702896 |
[47] |
Wen, L.W.; Man, N. N.; Yuan, W. K.; Li, M. J. Org. Chem. 2016, 81, 5942.
doi: 10.1021/acs.joc.6b00843 pmid: 27266363 |
[48] |
Neog, K.; Das, B.; Gogoi, P. Org. Biomol. Chem. 2018, 16, 3138.
doi: 10.1039/C8OB00631H |
[49] |
Sharma, A.; Gogoi, P. Org. Biomol. Chem. 2019, 17, 333.
doi: 10.1039/C8OB02507J |
[50] |
Zhou, M.; Ni, C.; Zeng, Y.; Hu, J. J. Am. Chem. Soc. 2018, 140, 6801.
doi: 10.1021/jacs.8b04000 pmid: 29787259 |
[51] |
Lei, M.; Miao, H.; Zhu, C. J.; Lu, X. Q.; Shen, J.; Qin, Y. R.; Zhang, H. Y.; Sha, S. J.; Zhu, Y. Q. Tetrahedron Lett. 2019, 60, 1389.
doi: 10.1016/j.tetlet.2019.04.033 |
[52] |
Huang, W. B.; Qiu, L. Q.; Ren, F. Y.; He, L. N. Chem. Commun. 2021, 57, 9578.
doi: 10.1039/D1CC04101K |
[53] |
Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2006, 128, 11040.
pmid: 16925418 |
[54] |
Yoshida, H.; Morishita, T.; Ohshita, J. Org. Lett. 2008, 10, 3845.
doi: 10.1021/ol801588s pmid: 18681452 |
[55] |
Yoshida, H.; Morishita, T.; Fukushima, H.; Ohshita, J.; Kunai, A. Org. Lett. 2007, 9, 3367.
pmid: 17645348 |
[56] |
Morishita, T.; Fukushima, H.; Yoshida, H.; Ohshita, J.; Kunai. A. Asian J. Org. Chem. 2008, 73, 5452.
|
[57] |
Giumanini, A. G. J. Org. Chem. 1972, 37, 513.
doi: 10.1021/jo00968a048 |
[58] |
Yan, Q.; Fan, R.; Liu, B. B.; Su, S. S.; Wang, B.; Yao, T. L.; Tan, J. J. Chin. J. Org. Chem. 2021, 41, 455. (in Chinese)
doi: 10.6023/cjoc202009009 |
(闫强, 范荣, 刘斌斌, 苏帅松, 王勃, 姚团利, 谭嘉靖, 有机化学, 2021, 41, 455.)
doi: 10.6023/cjoc202009009 |
|
[59] |
Masilamani, J.; Sivakolundu, B. J. Org. Chem. 2010, 5, 153.
|
[60] |
Stephens, D.; Zhang, Y.; Cormier, M.; Chavez, G.; Arman, H.; Larionov, O. V. Chem. Commun. 2013, 49, 6558.
doi: 10.1039/c3cc42854k |
[61] |
Tang, C. Y.; Wang, G.; Yang, X. Y.; Wu, X. Y.; Sha, F. Tetrahedron Lett. 2014, 55, 6447.
doi: 10.1016/j.tetlet.2014.09.130 |
[62] |
Kaldas, S. J.; Kran, E.; Mück, C.; Yudin, A. K.; Studer, A. Chem.- Eur. J. 2020, 26, 1501.
doi: 10.1002/chem.201904727 |
[63] |
Roy, T.; Baviskar, D. R.; Biju, A. T. J. Org. Chem. 2015, 80, 11131.
doi: 10.1021/acs.joc.5b01798 |
[64] |
Roy, T.; Bhojgude, S. S.; Kaicharla, T.; Thangaraj, M.; Garai, B.; Biju, A. T. Org. Chem. Front. 2016, 3, 71.
doi: 10.1039/C5QO00328H |
[65] |
Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2016, 52, 9044.
doi: 10.1039/C6CC00057F |
[66] |
Bhunia, A.; Roy, T.; Pachfule, P.; Rajamohanan, P. R.; Biju, A. T. Angew. Chem., Int. Ed. 2013, 52, 10040.
doi: 10.1002/anie.201304278 |
[67] |
Bhunia, A.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2013, 15, 4620.
doi: 10.1021/ol4023134 pmid: 23981103 |
[68] |
Liu, P.; Lei, M.; Hu, L. Tetrahedron 2013, 69, 10405.
doi: 10.1016/j.tet.2013.09.092 |
[69] |
Zhou, Y.; Chi, Y.; Zhao, F.; Zhang, W. X.; Xi, Z. Chem.-Eur. J. 2014, 20, 2463.
doi: 10.1002/chem.201304701 pmid: 24488788 |
[70] |
Bhojgude, S. S.; Baviskar, D. R.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2015, 17, 6270.
doi: 10.1021/acs.orglett.5b03319 pmid: 26655335 |
[71] |
Liu, K.; Gu, C. Z.; Dai, B.; He, L. RSC Adv. 2016, 6, 33606.
doi: 10.1039/C6RA02128J |
[72] |
Bhojgude, S. S.; Roy, T.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2016, 18, 5424.
doi: 10.1021/acs.orglett.6b02845 pmid: 27736077 |
[73] |
Okuma, K.; Kinoshita, H.; Nagahora, N.; Shioji, K. Eur. J. Org. Chem. 2016, 2264.
|
[74] |
Shu, W. M.; Ma, J. R.; Zheng, K. L.; Wu, A. X. Org. Lett. 2016, 18, 196.
doi: 10.1021/acs.orglett.5b03236 |
[75] |
Suh, S. E.; Chenoweth, D. M. Org. Lett. 2016, 18, 4080.
doi: 10.1021/acs.orglett.6b01977 |
[76] |
Jeganmohan, M.; Cheng, C. H. Chem. Commun. 2006, 2454.
|
[77] |
Tan, J.; Liu, B.; Su, S. Org. Chem. Front. 2018, 5, 3093.
doi: 10.1039/C8QO00838H |
[78] |
Liu, K.; Liu, L. L.; Gu, C. Z.; Dai, B.; He, L. RSC Adv. 2016, 6, 33606.
doi: 10.1039/C6RA02128J |
[79] |
Xu, J. K.; Li, S. J.; Wang, H. Y.; Xu, W. C.; Tian, S. K. Chem. Commun. 2017, 53, 1708.
doi: 10.1039/C6CC09311F |
[80] |
Guranova, N. I.; Voskressensky, L. G. Mendeleev Commun. 2017, 27, 506.
doi: 10.1016/j.mencom.2017.09.026 |
[81] |
Phatake, R. S.; Mullapudi, V.; Wakchaure, V. C.; Ramana, C. V. Org. Lett. 2017, 19, 372.
doi: 10.1021/acs.orglett.6b03573 |
[82] |
Gui, Y.; Tian, S. K. Org. Lett. 2017, 19, 1554.
doi: 10.1021/acs.orglett.7b00365 |
[83] |
Min, G.; Seo, J.; Ko, H. M. J. Org. Chem. 2018, 83, 8417.
doi: 10.1021/acs.joc.8b01058 |
[84] |
Seo, J.; Kim, D.; Ko, H. M. Adv. Synth. Catal. 2020, 362, 2739.
doi: 10.1002/adsc.202000375 |
[85] |
Li, S. J.; Wang, Y.; Xu, J. K.; Xie, D.; Tian, S. K.; Yu, Z. X. Org. Lett. 2018, 20, 4545.
doi: 10.1021/acs.orglett.8b01845 |
[86] |
Huang, X.; Zhao, W.; Chen, D. L.; Zhan, Y.; Zeng, T.; Jin, H.; Peng, B. Chem. Commun. 2019, 55, 2070.
doi: 10.1039/C9CC00557A |
[87] |
Li, S. J.; Han, L.; Tian, S. K. Chem. Commun. 2019, 55, 11255.
doi: 10.1039/C9CC05505C |
[88] |
Dhokale, R. A.; Mhaske, S. B. Org. Lett. 2016, 18, 3010.
doi: 10.1021/acs.orglett.6b01384 |
[89] |
Kwon, J.; Kim, B. M. Org. Lett. 2019, 21, 428.
doi: 10.1021/acs.orglett.8b03610 |
[90] |
Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. Angew. Chem., Int. Ed. 2004, 43, 3935.
doi: 10.1002/anie.200460009 |
[91] |
Yoshida, H.; Ohshita, J.; Kunai, A. Tetrahedron Lett. 2004, 45, 8659.
doi: 10.1016/j.tetlet.2004.09.144 |
[92] |
Yoshida, H.; Kunai, S. Tetrahedron 2007, 63, 4793.
doi: 10.1016/j.tet.2007.03.042 |
[93] |
Xie, C. S.; Zhang, Y. H.; Xu, P. X. Synlett 2008, 3115.
|
[94] |
Huang, X.; Zhang, T. Tetrahedron Lett. 2009, 50, 208.
doi: 10.1016/j.tetlet.2008.10.118 |
[95] |
Sha, F.; Huang, X. Angew. Chem., Int. Ed. 2009, 48, 3458.
doi: 10.1002/anie.200900212 |
[96] |
Sha, F.; Wu, L.; Huang, X. J. Org. Chem. 2012, 77, 3754.
doi: 10.1021/jo300072x |
[97] |
Shen, H.; Wu, X. Y. Eur. J. Org. Chem. 2013, 13, 2537.
|
[98] |
Gilmore, C. D.; Stoltz, B. M. Angew. Chem., Int. Ed. 2011, 50, 4488.
doi: 10.1002/anie.201100911 |
[99] |
Yoshida, H.; Asatsu, Y.; Mimura, Y.; Ito, Y.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed. 2011, 50, 9676.
doi: 10.1002/anie.201104858 |
[100] |
Kaicharla, T.; Thangaraj, M.; Biju, A. T. Org. Lett. 2014, 16, 1728.
doi: 10.1021/ol500403x pmid: 24611430 |
[101] |
Fang, Y.; Wang, S. Y.; Ji, S. J. Tetrahedron 2015, 71, 2768.
doi: 10.1016/j.tet.2015.02.051 |
[102] |
Serafini, M.; Griglio, A.; Viarengo, S.; Aprile, S.; Pirali, T. Org. Biomol. Chem. 2017, 15, 6604.
doi: 10.1039/c7ob01715d pmid: 28752162 |
[103] |
Li, R.; Wu, C. R.; Shi, F. J. Org. Chem. 2014, 79, 1344.
doi: 10.1021/jo402754d |
[104] |
Zhang, Y.; Xiong, W.; Cen, J.; Wu, Y.; Qi, C.; Wu, W.; Jiang, H. Chem. Commun. 2019, 55, 12304.
doi: 10.1039/C9CC05495B |
[105] |
Shu, W. M.; Zheng, K. L.; Ma, J. R.; Wu, A. X. Org. Lett. 2016, 18, 3762.
doi: 10.1021/acs.orglett.6b01782 |
[106] |
Huang, X.; Xue, J. J. Org. Chem. 2007, 72, 3965.
pmid: 17428099 |
[107] |
Shu, W. M.; Liu, S.; He, J. X.; Wang, S.; Wu, A. X. J. Org. Chem. 2018, 83, 9156.
doi: 10.1021/acs.joc.8b01207 |
[108] |
Zeng, Y.; Li, G.; Hu, J. Angew. Chem., Int. Ed. 2015, 54, 10773.
doi: 10.1002/anie.201503308 |
[109] |
Okugawa, Y.; Hayashi, Y.; Kawauchi, S.; Hirano, K.; Miura, M. Org. Lett. 2018, 20, 3670.
doi: 10.1021/acs.orglett.8b01470 pmid: 29874086 |
[110] |
Xiong, W.; Qi, C.; Cheng, R.; Zhang, H.; Wang, L.; Yan, D.; Jiang, H. Chem. Commun. 2018, 54, 5835.
doi: 10.1039/C8CC01732H |
[111] |
Bhattacharjee, S.; Guin, A.; Gaykar, R. N.; Biju, A. T. Org. Lett. 2019, 21, 4383.
doi: 10.1021/acs.orglett.9b01621 pmid: 31141383 |
[112] |
Jiang, H.; Zhang, Y.; Xiong, W.; Cen, J.; Wang, L.; Cheng, R.; Qi, C.; Wu, W. Org. Lett. 2019, 21, 345.
doi: 10.1021/acs.orglett.8b03193 |
[113] |
Fujimoto, H.; Kusano, M.; Kodama, T.; Tobisu, M. Org. Lett. 2020, 22, 229.
|
[1] | 李靖鹏, 黄顺桃, 杨棋, 李伟强, 刘腾, 黄超. 利用连续流动技术合成(Z)-N-乙烯基取代N,O-缩醛[J]. 有机化学, 2023, 43(4): 1550-1558. |
[2] | 于帮魁, 黄汉民. 碳-杂原子键复分解反应的研究进展[J]. 有机化学, 2022, 42(8): 2376-2389. |
[3] | 徐勇, 张永兴, 胡佳, 陈宬, 原晔, Francis Verpoort. ZnO/离子液体体系催化常压二氧化碳合成β-羰基氨基甲酸酯[J]. 有机化学, 2022, 42(8): 2542-2550. |
[4] | 乔辉杰, 杨利婷, 陈雅, 王嘉琳, 孙武轩, 董昊博, 王云威. 温和条件下高效合成咪唑并杂环-肼类衍生物的三组分串联反应[J]. 有机化学, 2022, 42(4): 1188-1197. |
[5] | 孟祥辉, 杨亮茹, 刘琪琳, 董振华, 袁金伟, 肖咏梅, 毛璞. 酰胺功能化吡啶/嘧啶螯合氮杂环卡宾钯化合物的合成、结构及其催化的咪唑C-5芳基化反应[J]. 有机化学, 2022, 42(11): 3747-3756. |
[6] | 许振丽, 张宗雪, 孟晨湘, 张萧雅, 许凯, 刘澜涛, 王涛, 徐海云, 毛国梁. 无配体条件钯催化内炔的氢膦酰化反应合成(E)-烯烃膦酸酯类化合物[J]. 有机化学, 2021, 41(8): 3264-3271. |
[7] | 祝改革, 赖晓辉, 王思雨, 林彩霞, 袁耀锋. 铜催化合成2-亚氨基-1,2-二氢喹啉化合物[J]. 有机化学, 2021, 41(7): 2810-2819. |
[8] | 李清寒, 罗瑞强, 吴川, 肖红柳, 郭少鹏, 张志豪, 黄哲耀, 周林. 烷基铝试剂与亲电试剂的偶联反应研究进展[J]. 有机化学, 2021, 41(4): 1489-1497. |
[9] | 王翔, 陈平, 支三军, 胡华友, 阚玉和, 唐果东, 张载超. 利用三组分串联反应合成3-苯并[d]咪唑啉取代的吡喃并[3,2-c]色烯-2-酮衍生物[J]. 有机化学, 2021, 41(3): 1241-1245. |
[10] | 韩超, 聂磊, 韩晓, 张岩, 孙克磊, 石磊, 崔广华, 孟伟. “一锅”三组分合成新型1,5-苯并二氮杂䓬类化合物与抗牛病毒性腹泻病毒(BVDV)活性[J]. 有机化学, 2021, 41(2): 819-825. |
[11] | 宾怀玉, 程立, 杨小会, 谢建华, 周其林. 石杉碱甲及其类似物吡啶稠合手性双环[3.3.1]壬烷骨架的不对称构建[J]. 有机化学, 2021, 41(10): 4021-4027. |
[12] | 宋文越, 饶小峰, 卜庆青, 刘宁. 咔唑桥连NCN齿形钯配合物催化的唑类C-H键直接芳基化反应[J]. 有机化学, 2020, 40(2): 489-500. |
[13] | 黄远婷, 陈迁. 芳炔参与的磷和硫芳基化反应研究进展[J]. 有机化学, 2020, 40(12): 4087-4100. |
[14] | 丁雨昕, 马永敏, 陈静. 无溶剂无催化剂条件下三组分一锅合成2,4,6-三芳基嘧啶衍生物的新方法[J]. 有机化学, 2020, 40(12): 4357-4363. |
[15] | 王卫伟, 赵宇, 刘鑫磊, 耿瑞, 王明安. 通过(E)-7-甲基-2,6-辛二烯酸的立体选择性Mizoroki-Heck芳基化反应合成(E)-3-芳基-7-甲基-2,6-辛二烯酸[J]. 有机化学, 2019, 39(4): 1129-1135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||