有机化学 ›› 2023, Vol. 43 ›› Issue (2): 573-601.DOI: 10.6023/cjoc202207042 上一篇    下一篇

综述与进展

蓝光热激子材料的研究进展

连铭槟a, 叶泽聪a,*(), 穆英啸a, 胡德华a, 刘源a, 张浩力a,b, 籍少敏a, 霍延平a,*()   

  1. a 广东工业大学轻工化工学院 广州 510006
    b 兰州大学化学化工学院 兰州 730000
  • 收稿日期:2022-07-29 修回日期:2022-09-09 发布日期:2022-10-14
  • 基金资助:
    国家自然科学基金(U2001222); 国家自然科学基金(21975055); 国家自然科学基金(21975053); 广东省自然科学基金(2021A1515110417); 广东省基础与应用基础研究基金(2022B1515020041); 广东省基础与应用基础研究基金(2019B1515120035); 广州市基础研究计划基础与应用基础研究(202102020770)

Progress on Blue-Emitting Hot Exciton Materials

Mingbing Liana, Zecong Yea(), Yingxiao Mua, Dehua Hua, Yuan Liua, Haoli Zhanga,b, Shaomin Jia, Yanping Huoa()   

  1. a School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006
    b School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou University, Lanzhou 730000
  • Received:2022-07-29 Revised:2022-09-09 Published:2022-10-14
  • Contact: *E-mail: yphuo@gdut.edu.cn;yezecong@gdut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U2001222); National Natural Science Foundation of China(21975055); National Natural Science Foundation of China(21975053); Natural Science Foundation of Guangdong Province(2021A1515110417); Guangdong Provincial Basic and Applied Basic Research Foundation(2022B1515020041); Guangdong Provincial Basic and Applied Basic Research Foundation(2019B1515120035); Basic and Applied Basic Research Foundation of Guangzhou(202102020770)

热激子荧光材料由于交错的能级排列, 激子在电致发光过程中可由高位三重态通过反向系间窜跃转换到单重态, 从而最大限度利用三重态激子, 实现理论100%的最大内量子效率, 这不仅突破了传统荧光材料和三重态-三重态上转换发光材料在激子利用上的限制, 而且克服了热活化延迟荧光(TADF)材料在高电流密度下效率滚降严重的问题, 因而在电致发光上显现出独特的优势. 蓝光长期以来是有机光电全彩显示的短板. 蓝光显示上, 磷光材料和TADF材料的色纯度和稳定性往往不尽如人意, 而热激子材料可实现更高品质的蓝光发射, 即使在深蓝领域也能表现出不俗的器件性能. 系统地综述了蓝光热激子材料的发光机理、设计准则以及近年来具有代表性的研究成果, 并对其发展趋势进行展望.

关键词: 热激子, 蓝光材料, 有机电致发光, 有机发光二极管

In hot exciton materials, the excitons from the high-lying triplet state (Tn, n≥2) can be efficiently converted into the singlet state (Sm, m≥1) via reverse intersystem crossing (RISC) process due to the staggered energy level arrangement, which maximizes the use of the triplet exciton and theoretically achieves a maximum internal quantum efficiency (IQE) of 100%. Hot exciton materials not only break the exciton utilization limitation of traditional fluorescent materials and triplet-triplet annihilation materials, but also overcome the serious efficiency roll-off of thermally activated delayed fluorescent (TADF) materials at high current density, exhibiting unique advantages in the electroluminescence. Blue light has long been the short board of the organic photoelectric full-color display. Compared with the phosphorescent and TADF materials with unsatisfying color purity and inferior stability, hot exciton materials can achieve higher-quality emission in blue devices, exhibiting excellent performance even in the deep-blue region. In this review, the representative blue-emitting hot exciton materials reported recently are summarized, the light-emitting mechanism and design strategy are elaborated, and a full vision of its development is made

Key words: hot exciton, blue emitter, organic electroluminesence, organic light-emitting diodes