有机化学 ›› 2023, Vol. 43 ›› Issue (9): 3067-3077.DOI: 10.6023/cjoc202303041 上一篇 下一篇
综述与进展
李焕清, 陈兆华, 陈祖佳, 邱琪雯, 张又才, 陈思鸿*(), 汪朝阳*()
收稿日期:
2023-03-28
修回日期:
2023-05-01
发布日期:
2023-05-29
基金资助:
Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen(), Zhaoyang Wang()
Received:
2023-03-28
Revised:
2023-05-01
Published:
2023-05-29
Contact:
E-mail: Supported by:
文章分享
汞具有很强的生物毒性, 会对人类的健康和环境造成极大危害. 荧光探针具有高灵敏度、高选择性、可实时监测等优点, 近年来在汞离子检测中广泛应用. 由于小分子具有结构多样性、重复性好、易修饰、感应机制清晰等优点, 目前许多检测汞离子的有机小分子荧光探针也已经被开发出来. 根据探针与汞离子反应机制的不同, 将其分为基于配位型反应和基于断键型反应两类, 重点综述了近五年来用于检测汞离子的有机小分子荧光探针的研究进展. 展望未来, 利用特征性反应开发“Turn On”型的反应性探针, 将是检测汞离子的有机小分子荧光探针研究中的重点方向.
李焕清, 陈兆华, 陈祖佳, 邱琪雯, 张又才, 陈思鸿, 汪朝阳. 基于有机小分子的汞离子荧光探针研究进展[J]. 有机化学, 2023, 43(9): 3067-3077.
Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules[J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077.
[1] |
Liu Z. C.; Chen B. N.; Wang L. A.; Urbanovich O.; Nagorskaya L.; Li X.; Tang L. J. Hazard. Mater. 2020, 400, 123138.
doi: 10.1016/j.jhazmat.2020.123138 |
[2] |
Budnik L. T.; Casteleyn L. Sci. Total Environ. 2019, 654, 720.
doi: 10.1016/j.scitotenv.2018.10.408 |
[3] |
Wang Y.; Zhang L. W.; Chen L. X. Anal. Chem. 2019, 92, 1997.
doi: 10.1021/acs.analchem.9b04381 |
[4] |
Shuai H.; Xiang C.; Qian L.; Bin F.; Liu X. H.; Ding J. P.; Chang Z.; Liang J. H.; Zeng W. B. Dyes Pigm. 2021, 187, 109125.
doi: 10.1016/j.dyepig.2020.109125 |
[5] |
Wang Y.; Zhang L.; Han X. Y.; Zhang L. W.; Wang X. Y.; Chen L. X. Chem. Eng. J. 2020, 406, 127166.
doi: 10.1016/j.cej.2020.127166 |
[6] |
Wang D.; Marin L.; Cheng X. J. Int. J. Biol. Macromol. 2022, 198, 194.
doi: 10.1016/j.ijbiomac.2021.12.075 |
[7] |
Qi M. R.; Zhang Z. H.; Li L.; Mu X. Y.; Wang Y. Food Chem. 2023, 408, 135211.
doi: 10.1016/j.foodchem.2022.135211 |
[8] |
Chen, S-Y.; Li, Z.; Li, K.; Yu, X-Q. Coord. Chem. Rev. 2021, 429, 213691.
doi: 10.1016/j.ccr.2020.213691 |
[9] |
Wu D.; Ma M. Y.; Zhang M. L.; Xiao Y. N.; Yu H. B.; Shao Y. H.; Zhang X. F.; Cheng Z. H.; Xiao W. Dyes Pigm. 2022, 198, 110001.
doi: 10.1016/j.dyepig.2021.110001 |
[10] |
Bhardwaj V.; Nurchi V. M.; Sahoo S. K. Pharmaceuticals 2021, 12, 123.
doi: 10.3390/ph12030123 |
[11] |
Yuan Z. H.; Yang Y. S.; Lv P. C.; Zhu H. L. Crit. Rev. Anal. Chem. 2020, 52, 250.
doi: 10.1080/10408347.2020.1797466 |
[12] |
Aderinto S. O. Chem. Pap. 2020, 74, 3195.
doi: 10.1007/s11696-020-01180-8 |
[13] |
Kaewnok N.; Sirirak J.; Jungsuttiwong S.; Wongnongwa Y.; Kamkaew A.; Petdum A.; Panchan W.; Sahasithiwat S.; Sooksimuang T.; Charoenpanich A.; Wanichacheva N. J. Hazard. Mater. 2021, 418, 126242.
doi: 10.1016/j.jhazmat.2021.126242 |
[14] |
Kumar A.; Sardhalia V.; Sahoo P. R.; Kumar A.; Kumar S. J. Mol. Struct. 2021, 1235, 130233.
doi: 10.1016/j.molstruc.2021.130233 |
[15] |
Ravichandiran P.; Kaliannagounder V. K.; Maroli N.; Boguszewska-Czubara A.; Maslyk M.; Kim A. R.; Park B.-H.; Han M.-K.; Kim C. S.; Park C. H.; Yoo D. J. Spectrochim. Acta, Part A 2021, 257, 119776.
doi: 10.1016/j.saa.2021.119776 |
[16] |
Erdemir S.; Oguz M.; Malkondu S. Anal. Chim. Acta 2022, 1192, 339353.
doi: 10.1016/j.aca.2021.339353 |
[17] |
Li G. J.; Guan Y. H.; Ye F. Y.; Liu S. H.; Yin J. Spectrochim. Acta, Part A 2020, 239, 118465.
doi: 10.1016/j.saa.2020.118465 |
[18] |
Tripathy M.; Subuddhi U.; Patel S. Dyes Pigm. 2020, 174, 108054.
doi: 10.1016/j.dyepig.2019.108054 |
[19] |
Verma A.; Modi K.; Dey S.; Kongor A.; Panchal M.; Vora M.; Panjwani F.; Jain V. K. J. Fluoresc. 2022, 32, 637.
doi: 10.1007/s10895-021-02860-8 |
[20] |
Xue S. R.; Wang P.; Chen K. Spectrochim. Acta, Part A 2020, 226, 117616.
doi: 10.1016/j.saa.2019.117616 |
[21] |
Divya D.; Thennarasu S. Spectrochim. Acta, Part A 2020, 243, 118796.
doi: 10.1016/j.saa.2020.118796 |
[22] |
Wang S. X.; Cao J.; Cheng Y. X.; Lu C. H. Chem. Res. Chin. Univ. 2019, 35, 967.
doi: 10.1007/s40242-019-9246-7 |
[23] |
Liu D. Y.; Zhu H. L.; Shi J.; Deng X. X.; Zhang T. T.; Zhao Y.; Qi P. P.; Yang G. M.; He H. R. Anal. Methods 2019, 11, 3150.
doi: 10.1039/C9AY00711C |
[24] |
Shen Q. Q.; Kong X. X.; Li K. Y.; Wan T. T.; Dong J. P.; Wu H. L. J. Chin. Chem. Soc. 2022, 69, 960.
doi: 10.1002/jccs.v69.6 |
[25] |
Mahata S.; Kumar S.; Dey S.; Mandal B. B.; Manivannan V. Inorg. Chim. Acta 2022, 535, 120876.
doi: 10.1016/j.ica.2022.120876 |
[26] |
Su M. J.; Liu C. Y.; Zhang Y.; Rong X. D.; Wang X.; Li X. W.; Wang K.; Zhu H. C.; Zhu B. C. Anal. Chim. Acta 2022, 1230, 340337.
doi: 10.1016/j.aca.2022.340337 |
[27] |
Said A. I.; Staneva D.; Angelova S.; Grabchev I. Sensors 2023, 23, 399.
doi: 10.3390/s23010399 |
[28] |
Bahta M.; Ahmed N. J. Photochem. Photobiol., A 2019, 378, 85.
doi: 10.1016/j.jphotochem.2019.04.027 |
[29] |
Su M. J.; Liu C. Y.; Liang Y. Y.; Zhang Y.; Rong X. D.; Wang X.; Li X. W.; Wang K.; Zhu H. C.; Yu M. H.; Sheng W. L.; Zhu B. C. New J. Chem. 2022, 46, 10951.
doi: 10.1039/D2NJ01314B |
[30] |
Liu S. D.; Zhang X.; Yan C. X.; Zhou P. P.; Zhang L.; Li Q. Z.; Zhang R. J.; Chen L. X.; Zhang L. W. J. Hazard. Mater. 2021, 424, 127701.
doi: 10.1016/j.jhazmat.2021.127701 |
[31] |
Panchenko P. A.; Fedorov Y. V.; Fedorova O. A. J. Photochem. Photobiol., A 2018, 364, 124.
doi: 10.1016/j.jphotochem.2018.06.003 |
[32] |
Bu F. Q.; Zhao B.; Kan W.; Ding L. M.; Liu T.; Wang L. Y.; Song B.; Wang W. B.; Deng Q. G. J. Photochem. Photobiol., A 2020, 387, 112165.
doi: 10.1016/j.jphotochem.2019.112165 |
[33] |
Ngororabanga J. M. V..; Moyo C. B.; Tshentu Z. R. Spectrochim. Acta, Part A 2020, 242, 118651.
doi: 10.1016/j.saa.2020.118651 |
[34] |
Krishnan U.; Iyer S. K. Photochem. Photobiol. 2022, 98, 843.
doi: 10.1111/php.v98.4 |
[35] |
Sidana N.; Devi P.; Kaur H. Opt. Mater. 2022, 124, 111985.
doi: 10.1016/j.optmat.2022.111985 |
[36] |
Kaur B.; Gupta A.; Kaur N. Microchem. J. 2020, 153, 104508.
doi: 10.1016/j.microc.2019.104508 |
[37] |
Tumay S. O.; Yesilot S. J. Photochem. Photobiol., A 2021, 407, 113093.
doi: 10.1016/j.jphotochem.2020.113093 |
[38] |
Chen W.; Guan Y. H.; Chen Q.; Ren J.; Xie Y.; Yin J. Dyes Pigm. 2022, 200, 110134.
doi: 10.1016/j.dyepig.2022.110134 |
[39] |
Malankar G. S.; Shelar D. S.; Manikandan M.; Patra M.; Butcher R. J.; Manjare S. T. Dalton Trans. 2022, 51, 10069.
doi: 10.1039/D2DT01086K |
[40] |
Haldar U.; Lee H. I. ACS Appl. Mater. Interfaces 2019, 11, 13685.
doi: 10.1021/acsami.9b00408 |
[41] |
Tan Y.-H.; Li J.-X.; Huo J.-P.; Xue F.-L.; Wang Z.-Y. Synth. Commun. 2014, 44, 2974.
doi: 10.1080/00397911.2014.914220 |
[42] |
Huo J.-P.; Luo J.-C.; Wu W.; Xiong, J-F.; Mo, G.-Z.; Wang, Z.-Y. Ind. Eng. Chem. Res., 2013, 52, 11850.
doi: 10.1021/ie401149p |
[43] |
Shi W. J.; Liu J. Y.; Lo P. C.; Ng D. K. P. Chem. Asian J. 2019, 14, 1059.
doi: 10.1002/asia.v14.7 |
[44] |
Saiyasombat W.; Kiatisevi S. RSC Adv. 2021, 11, 3703.
doi: 10.1039/d0ra09686e pmid: 35424275 |
[45] |
Yu B.; Yuan R. M.; He T. Z.; Liang L. J.; Huang K. J. Fluoresc. 2022, 32, 2077.
doi: 10.1007/s10895-022-02966-7 |
[46] |
He H. F.; Meng X. Y.; Deng L. L.; Sun Q.; Huang X. L.; Lan N.; Zhao F. Org. Biomol. Chem. 2020, 18, 6357.
doi: 10.1039/D0OB01396J |
[47] |
Meng X. Y.; Wang J. B.; Li X.; Sun Q.; Tu Q. D.; Liu X. H.; He H. F.; Zhao F. Microchem. J. 2021, 169, 106551.
doi: 10.1016/j.microc.2021.106551 |
[48] |
Kraithong S.; Panchan W.; Charoenpanich A.; Sirirak J.; Sahasithiwat S.; Swanglap P.; Promarak V.; Thamyongkit P.; Wanichacheva N. J. Photochem. Photobiol., A 2020, 389, 112224.
doi: 10.1016/j.jphotochem.2019.112224 |
[49] |
Wang J. H.; Liu Y. M.; Dong Z. M.; Chao J. B.; Wang H.; Wang Y.; Shuang S. M. J. Hazard. Mater. 2020, 382, 121056.
doi: 10.1016/j.jhazmat.2019.121056 |
[50] |
Wang B.-W.; Jiang K.; Li J.-X.; Luo S.-H.; Wang Z.-Y.; Jiang H.-F. Angew. Chem., Int. Ed. 2020, 59, 2338.
doi: 10.1002/anie.v59.6 |
[51] |
Wang P.; Xue S. R.; Chen B.; Liao F. Anal. Bioanal. Chem. 2022, 414, 4717.
doi: 10.1007/s00216-022-04094-4 |
[52] |
Li Y. X.; Zhang Y. L.; Wang M.; Wang D. J.; Chen K.; Lin P. C.; Ge Y. S.; Liu W. S.; Wu J. J. Hazard. Mater. 2021, 415, 125712.
doi: 10.1016/j.jhazmat.2021.125712 |
[53] |
Zhang Y. Q.; Zhou H.; Du X. R.; Guo X.; Wang Q. S.; Zeng X. J. Lumin. 2022, 244, 118738.
doi: 10.1016/j.jlumin.2022.118738 |
[54] |
Selvaraj M.; Rajalakshmi K.; Ahn D.-H.; Yoon S.-J.; Nam Y.-S.; Lee Y.; Xu Y.-G.; Song J.-W.; Lee K.-B. Anal. Chim. Acta 2021, 1148, 238178.
doi: 10.1016/j.aca.2020.12.053 |
[55] |
Tian J.-J.; Deng D.-D.; Wang L.; Chen Z.; Pu S.-Z. Front. Chem. 2022, 9, 811294.
doi: 10.3389/fchem.2021.811294 |
[56] |
Tang A. L.; Yin Y.; Chen Z.; Fan C. B.; Liu G.; Pu S. Z. Tetrahedron 2019, 75, 130489.
doi: 10.1016/j.tet.2019.130489 |
[57] |
Tang A. L.; Chen Z.; Deng D. D.; Liu G.; Tu Y. Y.; Pu S. Z. RSC Adv. 2019, 9, 11865.
doi: 10.1039/C9RA02119A |
[58] |
Jagadhane K. S.; Bhosale S. R.; Gunjal D. B.; Nille O. S.; Kolekar G. B.; Kolekar S. S.; Dongale T. D.; Anbhule P. V. ACS Omega 2022, 7, 34888.
doi: 10.1021/acsomega.2c03437 pmid: 36211049 |
[59] |
Kumar A.; Kumar S.; Chae P. S. Dyes Pigm. 2020, 181, 108522.
doi: 10.1016/j.dyepig.2020.108522 |
[60] |
Rajadurai M.; Reddy E. R. RSC Adv. 2021, 11, 14862.
doi: 10.1039/d1ra02122b pmid: 35423996 |
[61] |
Satheeshkumar K.; Nandhini C.; Shanmugapriya R.; Vennila K. N.; Elango K. P.; Kumar P. S. Inorg. Chem. Commun. 2022, 139, 109299.
doi: 10.1016/j.inoche.2022.109299 |
[62] |
Liu Q.-S.; Yang Z.-H.; Wang Z.-L.; Sun Y.; Chen L.-L.; Sun L.; Sun X.-B.; Gu W. J. Photochem. Photobiol., A 2022, 423, 113597.
doi: 10.1016/j.jphotochem.2021.113597 |
[63] |
Mondal S.; Patra N.; Nayek H. P.; Hira S. K.; Chatterjee S.; Dey S. Photochem. Photobiol. Sci. 2020, 19, 1211.
doi: 10.1039/d0pp00140f |
[64] |
Ye F.; Liang X. M.; Xu K. X.; Pang X. X.; Chai Q.; Fu Y. Talanta 2019, 200, 494.
doi: 10.1016/j.talanta.2019.03.076 |
[65] |
Hu L.; Xie K. L.; Gao A. Q.; Hu Y.; Hou A. Q. Dyes Pigm. 2022, 199, 110048.
doi: 10.1016/j.dyepig.2021.110048 |
[66] |
Guan W. L.; Zhang Y. F.; Zhang Q. P.; Zhang Y. M.; Wei T. B.; Yao H.; Lin Q. J. Lumin. 2022, 244, 118722.
doi: 10.1016/j.jlumin.2021.118722 |
[67] |
Elmas S. N. K.; Dincer Z. E.; Erturk A. S.; Bostanci A.; Karagoz A.; Koca M.; Sadi G.; Yilmaz I. Spectrochim. Acta, Part A 2020, 224, 117402.
doi: 10.1016/j.saa.2019.117402 |
[68] |
Ngororabanga J. M. V.; Tshentu Z. R.; Mama N. J. Fluoresc. 2020, 30, 985.
doi: 10.1007/s10895-020-02542-x pmid: 32583123 |
[69] |
Isaad J.; El Achari A. J. Lumin. 2022, 243, 118668.
doi: 10.1016/j.jlumin.2021.118668 |
[70] |
Muthusamy S.; Rajalakshmi K.; Zhu D. W.; Zhu W. H.; Wang S. J. Lee K. B.; Xu H. J.; Zhao L. Sens. Actuators, B 2021, 346, 130534.
doi: 10.1016/j.snb.2021.130534 |
[71] |
Isaad J.; Malek F.; El Achari A. J. Mol. Struct. 2022, 1270, 133838.
doi: 10.1016/j.molstruc.2022.133838 |
[72] |
Rathod R. V.; Bera S.; Maity P.; Mondal D. ACS Omega 2020, 5, 4982.
doi: 10.1021/acsomega.9b03885 pmid: 32201784 |
[73] |
Xue S. S.; Xie Z. F.; Wen Y. P.; He J. W.; Liu Y. C.; Shi W. ChemistrySelect 2021, 6, 7123.
doi: 10.1002/slct.v6.28 |
[74] |
Yin P. C.; Niu Q. F.; Liu J. Q.; Wei T.; Hu T. T.; Li T. D.; Qin X. Y.; Chen J. B. Sens. Actuators, B 2021, 331, 129418.
doi: 10.1016/j.snb.2020.129418 |
[75] |
Aydin D.; Yilmaz I. J. Photochem. Photobiol., A 2021, 414, 113280.
doi: 10.1016/j.jphotochem.2021.113280 |
[76] |
Erdemir E.; Suna G.; Gunduz S.; Sahin M.; Eglence-Bakir S.; Karakus E. Food Chem. 2022, 371, 131309.
doi: 10.1016/j.foodchem.2021.131309 |
[77] |
Musikavanhu B.; Muthusamy S.; Zhu D. W.; Xue Z. L.; Yu Q.; Chiyumba C. N.; Mack J.; Nyokong T.; Wang S. J.; Zhao L. Spectrochim. Acta, Part A 2022, 264, 120338.
doi: 10.1016/j.saa.2021.120338 |
[78] |
Yu S. B.; Gao L.; Li R.; Fu C.; Meng W.; Wang L.; Li L. Z. Spectrochim. Acta, Part A 2021, 250, 119246.
doi: 10.1016/j.saa.2020.119246 |
[79] |
Gharami S.; Aich K.; Ghosh P.; Patra L.; Murmu N.; Mondal T. K. Dalton Trans. 2020, 49, 187.
doi: 10.1039/C9DT04245H |
[80] |
Wang L. Y.; Lou C. H.; Duan S. Y.; Cheng D. Y.; Wang A. Q.; Zhao B.; Zhao H. P.; Yin G. M.; Zhao M. Inorg. Chem. Commun. 2020, 119, 108096.
doi: 10.1016/j.inoche.2020.108096 |
[81] |
Darroudi M.; Ziarani G. M.; Ghasemi J. B.; Badiei A. J. Mol. Struct. 2021, 1241, 130626.
doi: 10.1016/j.molstruc.2021.130626 |
[82] |
Ergun E. G. C.; Ertas G.; Eroglu D. J. Photochem. Photobiol., A 2020, 394, 112469.
doi: 10.1016/j.jphotochem.2020.112469 |
[83] |
Li A.-L.; Wang Z.-L.; Wang W.-Y.; Liu Q.-S.; Sun Y.; Wang S.-F.; Gu W. Microchem. J. 2021, 160, 105682.
doi: 10.1016/j.microc.2020.105682 |
[84] |
Ziarani G. M.; Roshankar S.; Mohajer F.; Badiei A.; Karimi- Maleh H.; Gaikwad S. V. Environ. Res. 2022, 212, 113245.
doi: 10.1016/j.envres.2022.113245 |
[85] |
Zhang Y.; Liu C. Y.; Su M. J.; Rong X. D.; Wang X.; Wang K.; Li X. W.; Zhu H. C.; Yu M. H.; Sheng W. L.; Zhu B. C. J. Photochem. Photobiol., A 2022, 425, 113706.
doi: 10.1016/j.jphotochem.2021.113706 |
[86] |
Kumar A.; Hur W.; Seong G. H.; Kumar S.; Chae P. S. Dyes Pigm. 2022, 198, 110025.
doi: 10.1016/j.dyepig.2021.110025 |
[87] |
Lv H. H.; Yuan G.; Zhang G. B.; Ren Z. Q.; He H. P.; Sun Q.; Zhang X. H.; Wang S. F. Dyes Pigm. 2020, 172, 107658.
doi: 10.1016/j.dyepig.2019.107658 |
[88] |
Bhatt S.; Vyas G.; Paul P. J. Fluoresc. 2020, 30, 1531.
doi: 10.1007/s10895-020-02625-9 |
[89] |
Wang L. Y.; Lou C. H.; Zhao M.; Zhao B.; Zhao H. P.; Ma W. H.; Wang A. Q.; Wang X.; Wang N.; Li Y. F. Inorg. Chem. Commun. 2021, 129, 108662.
doi: 10.1016/j.inoche.2021.108662 |
[90] |
Muzey B.; Naseem A. Photochem. Photobiol., A 2020, 391, 112354.
doi: 10.1016/j.jphotochem.2020.112354 |
[91] |
Panchenko P. A.; Efremenko A. V.; Polyakova A. S.; Feofanov A. V.; Ustimova M. A.; Fedorov Y. V.; Fedorova O. Biosensors 2022, 12, 770.
doi: 10.3390/bios12090770 |
[92] |
Tripathy M.; Subuddhi U.; Patel S. ChemistrySelect 2020, 5, 4803.
doi: 10.1002/slct.v5.16 |
[93] |
Chan C. M.; Liu H. R.; Xue Z. L. Microchem. J. 2021, 166, 106247.
doi: 10.1016/j.microc.2021.106247 |
[94] |
Shi W. J.; Liu J. Y.; Lo P. C.; Ng D. K. P. Chem. Asian J. 2019, 14, 1059.
doi: 10.1002/asia.v14.7 |
[95] |
Seenan S.; Manickam S.; Iyer S. K. New J. Chem. 2021, 45, 17667.
doi: 10.1039/D1NJ03561D |
[96] |
Bahta M.; Ahmed N. J. Photochem. Photobiol., A 2019, 373, 154.
doi: 10.1016/j.jphotochem.2019.01.009 |
[97] |
Wei P.; Xiao L.; Gou Y. T.; He F.; Wang P.; Yang X. P. Spectrochim. Acta, Part A 2023, 285, 121836.
doi: 10.1016/j.saa.2022.121836 |
[98] |
Erdemir S.; Malkondu S. J. Mol. Liq. 2021, 326, 115279.
doi: 10.1016/j.molliq.2021.115279 |
[99] |
Yu Y. M; Sheng W. L; Liu C. Y; Gao N; Tian B; Zhu H. C; Jia P; Li Z. L; Zhang X; Wang K; Li X. W; Zhu B. C. Spectrochim. Acta, Part A 2021, 249, 119279.
doi: 10.1016/j.saa.2020.119279 |
[100] |
Mohamed M. B. I.; El-Sedik M. S.; Youssef Y. A.; Mohamed N. A.; Aysha T. S. J. Photochem. Photobiol., A 2022, 433, 114206.
doi: 10.1016/j.jphotochem.2022.114206 |
[101] |
Picard-Lafond A.; Lariviere D.; Boudreau D. ACS Omega 2020, 5, 701.
doi: 10.1021/acsomega.9b03333 pmid: 31956820 |
[102] |
Wang G. M.; Xu W. J.; Liu Y. F.; Fu N. Y. Microchem. J. 2022, 179, 107481.
doi: 10.1016/j.microc.2022.107481 |
[103] |
Yu Y. M.; Liu C. Y.; Tian B.; Cai X. Y.; Zhu H. C.; Jia P.; Li Z. L.; Zhang X.; Sheng W. L.; Zhu B. C. Dyes Pigm. 2020, 177, 108290.
doi: 10.1016/j.dyepig.2020.108290 |
[104] |
Li X. M.; Li X.; Zhao H.; Kang H. M.; Fan C. B.; Liu G.; Pu S. Z. J. Fluoresc. 2021, 31, 1513.
doi: 10.1007/s10895-021-02775-4 |
[105] |
Erdemir S. Sens. Actuators, B 2019, 290, 558.
doi: 10.1016/j.snb.2019.04.037 |
[106] |
Xu Z. Y.; He X. D.; Han L.; Wang X. H.; Li H. S.; Chen J. R.; Xu L. Q.; Luo H. Q.; Li N. B. Chem. Eng. J. 2022, 444, 136601.
doi: 10.1016/j.cej.2022.136601 |
[107] |
Samanta T.; Das N.; Patra D.; Kumar P.; Sharmistha B.; Shunmugam R. ACS Sustainable Chem. Eng. 2021, 9, 5196.
doi: 10.1021/acssuschemeng.1c00437 |
[108] |
Choi M. G.; Yun B. H.; Kim H. M.; Ahn S.; Chang S. K. RSC Adv. 2022, 12, 24107.
doi: 10.1039/D2RA04093J |
[109] |
Du B. X.; Li Q.; Huang K.; Wang Q.; Liang L. J. J. Photochem. Photobiol., A 2023, 436, 114419.
doi: 10.1016/j.jphotochem.2022.114419 |
[110] |
Singh S.; Coulomb B.; Boudenne J.-L.; Bonne D.; Dumur F.; Simon B.; Robert-Peillard F. Talanta 2021, 224, 121909.
doi: 10.1016/j.talanta.2020.121909 |
[111] |
Yang X. F.; Ding Y. M.; Li Y. X.; Yan M.; Cui Y.; Sun G. X. Spectrochim. Acta, Part A 2021, 258, 119868.
doi: 10.1016/j.saa.2021.119868 |
[112] |
Vanjare B. D.; Mahajan P. G.; Ryoo H.-I.; Dige N. C.; Choi N. G.; Han Y.; Kim S. J.; Kim C. H.; Lee K. H. Sens. Actuators, B 2021, 331, 129308.
|
[113] |
Gauthama B. U.; Narayana B.; Sarojini B. K.; Suresh N. K.; Sangappa Y.; Kudva A. K.; Satyanarayana G.; Raghu S. V. Microchem. J. 2021, 166, 106233.
doi: 10.1016/j.microc.2021.106233 |
[114] |
Hu W.; Wang J. Y. Dalton Trans. 2022, 51, 1005.
|
[115] |
Wei T.-B.; Zhao Q.; Li Z.-H.; Dai X.-Y.; Niu Y.-B.; Yao H.; Zhang Y.-M.; Qu W.-J.; Lin Q. Dyes Pigm. 2021, 192, 109436.
doi: 10.1016/j.dyepig.2021.109436 |
[116] |
Li B.; Tian F. L.; Hua Y. P. RSC Adv. 2022, 12, 21129.
doi: 10.1039/D2RA02185D |
[117] |
Wei G.; Lin N. B.; Gu Y. L.; Ren X.; Zhao G.; Guang S. Y.; Feng J. H.; Xu H. Y. Sens. Actuators, B 2020, 321, 128532.
doi: 10.1016/j.snb.2020.128532 |
[118] |
Pattaweepaiboon S.; Nanok T.; Kaewchangwat N.; Suttisintong K.; Sirisaksoontorn W. Dyes Pigm. 2021, 186, 108996.
doi: 10.1016/j.dyepig.2020.108996 |
[119] |
Mohammad H.; Islam A. M.; Sasmal M.; Prodhan C.; Ali M. Inorg. Chim. Acta 2022, 543, 121165.
doi: 10.1016/j.ica.2022.121165 |
[120] |
Wang Y. S.; Ding H. C.; Zhu Z. F.; Fan C. B.; Tu Y. Y.; Liu G.; Pu S. Z. J. Photochem. Photobiol., A 2020, 309, 112302.
|
[121] |
Huang K.; Liu Y. T.; Zhao P.; Liang L. J.; Wang Q.; Qin D. B. Spectrochim. Acta, Part A 2022, 282, 121688.
doi: 10.1016/j.saa.2022.121688 |
[122] |
Wen D.; Deng X. K.; Xu G.; Wu H. R.; Yu Y. H. J. Mol. Struct. 2021, 1236, 130323.
doi: 10.1016/j.molstruc.2021.130323 |
[123] |
Zhang Q.; Ding H. C.; Xu X. H.; Wang H. X.; Liu G.; Pu S. Z. Spectrochim. Acta, Part A 2022, 276, 121242.
doi: 10.1016/j.saa.2022.121242 |
[124] |
Zhu Z. F.; Ding H. C.; Wang Y. S.; Fan C. B.; Tu Y. Y.; Liu G.; Pu S. Z. J. Photochem. Photobiol., A 2020, 400, 112657.
doi: 10.1016/j.jphotochem.2020.112657 |
[125] |
Zhang Q.; Ding H. C.; Xu X. H.; Liu G.; Pu S. Z. Inorg. Chem. Commun. 2022, 139, 109352.
doi: 10.1016/j.inoche.2022.109352 |
[126] |
Zhao M.; Shao G.-K.; Guo Y.-S.; Tang Y.-L.; Liu J.-B.; Guo D.-S. New J. Chem. 2020, 44, 12538.
doi: 10.1039/D0NJ01995J |
[127] |
Huang K.; Liu Y. T.; Li Q.; Yu B.; Liang L. J.; Qin D. B. Spectrochim. Acta, Part A 2022, 281, 121651.
doi: 10.1016/j.saa.2022.121651 |
[128] |
Chen S.; Wang W. J.; Yan M. M.; Tu Q.; Chen S.-W.; Li T. B.; Yuan M.-S.; Wang J. Y. Sens. Actuators, B 2018, 255, 2086.
doi: 10.1016/j.snb.2017.09.008 |
[129] |
Zhao M.; Guo Y.-S.; Fu G.-D.; Wang Q.; Sheng W.-L.; Guo D.-S. Microchem. J. 2021, 171, 106855.
doi: 10.1016/j.microc.2021.106855 |
[130] |
Zhao M.; Guo Y.-S.; Fu G.-D.; Xue A.-Q.; Shao Q.-H.; Wang Q.; Guo D.-S. Spectrochim. Acta, Part A 2020, 248, 119252.
doi: 10.1016/j.saa.2020.119252 |
[131] |
Liu Y. L.; Yang L.; Li L.; Liang X. M.; Li S. J.; Fu Y. Spectrochim. Acta, Part A 2020, 241, 118678.
doi: 10.1016/j.saa.2020.118678 |
[132] |
Liu J. F.; Li J.; Tang J.; Yang X. P.; Zhang D.; Ye Y.; Zhao Y. F. Talanta 2021, 234, 122606.
doi: 10.1016/j.talanta.2021.122606 |
[133] |
Cheng X.; Huang S.; Lei Q.; Chen F.; Zheng F.; Zhong S. B.; Huang X. Y.; Feng B.; Feng X. P.; Zeng W. B. Chin. Chem. Lett. 2022, 33, 1861.
doi: 10.1016/j.cclet.2021.10.024 |
[134] |
Tang H. J.; Wang Y. H.; Chen Z. Y.; Yang K. X.; Qin J.; Li X. H.; Li H. J.; Gao L.; Lu S. Y.; Wang K. M. Spectrochim. Acta, Part A 2022, 279, 121396.
doi: 10.1016/j.saa.2022.121396 |
[135] |
Jiang L.; Zheng T.; Xu Z. X.; Li J. Y.; Li H. Q.; Tang J. J.; Liu S. C.; Wang Y. Y. Spectrochim. Acta, Part A 2022, 271, 120916.
doi: 10.1016/j.saa.2022.120916 |
[136] |
Cui W.-L.; Zhang Z.-H.; Wang L.; Qu J. B.; Wang J.-Y. Spectrochim. Acta, Part A 2021, 267, 120516.
doi: 10.1016/j.saa.2021.120516 |
[137] |
Qi Y. G.; Li Y. J.; Nan T. T.; Li H. Q.; Tang J. J.; Liu S. C.; Wang Y. Y. Opt. Mater. 2022, 123, 111929.
doi: 10.1016/j.optmat.2021.111929 |
[138] |
Wang Z. L.; Zhang Y.; Yin J.; Yang Y. Q.; Luo H.; Song J.; Xu X.; Wang S. F. ACS Sustainable Chem. Eng. 2020, 8, 12348.
doi: 10.1021/acssuschemeng.9b07843 |
[139] |
Jothi D.; Iyer S. K. Inorg. Chem. Commun. 2022, 143, 109735.
doi: 10.1016/j.inoche.2022.109735 |
[140] |
Erdemir S.; Malkondu S. Food Chem. 2022, 376, 131951.
doi: 10.1016/j.foodchem.2021.131951 |
[141] |
Pan J. M.; Ma J.; Liu L.; Li D. H.; Huo Y. T.; Liu H. J. Photochem. Photobiol., A 2021, 416, 113322.
doi: 10.1016/j.jphotochem.2021.113322 |
[142] |
Pei S.-C.; Li C.-Z.; Pei X.-Y.; Zeng W.-H.; Zhang Y.-Y.; Jiang K.-X.; Huang X.; Liao X.-L.; Chen J. Spectrochim. Acta, Part A 2022, 285, 121886.
doi: 10.1016/j.saa.2022.121886 |
[143] |
Li H.; Sheng W. L.; Wang L. Z.; Meng X.; Duan H. D.; Chi L. Q. RSC Adv. 2021, 11, 23597.
doi: 10.1039/D1RA01408K |
[144] |
Li C. Q.; Xiao L.; Zhang Q. Y.; Cheng X. J. Spectrochim. Acta, Part A 2020, 243, 118763.
doi: 10.1016/j.saa.2020.118763 |
[145] |
Choudhary N. K.; Mittapelli L. L.; Roy P. K.; Das G.; Mandal M..; Gore K. R. Spectrochim. Acta, Part A 2022, 285, 121887.
doi: 10.1016/j.saa.2022.121887 |
[146] |
Tutuncu B. B.; Cebeci M.; Emrullahoglu M. Chem. - Asian J. 2022, 17, e202200273.
doi: 10.1002/asia.v17.13 |
[147] |
Subedi S.; Neupane L. N.; Mehta P. K.; Lee K. H. Dyes Pigm. 2021, 191, 109374.
doi: 10.1016/j.dyepig.2021.109374 |
[148] |
Subedi S.; Neupane L. N.; Yu H.; Lee K.-H. Sens. Actuators, B 2021, 338, 129814.
doi: 10.1016/j.snb.2021.129814 |
[1] | 张莹珍, 江丹丹, 李娟华, 王菁菁, 刘昆明, 刘晋彪. 高选择性硒代半胱氨酸荧光探针的构建策略及成像[J]. 有机化学, 2024, 44(1): 41-53. |
[2] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[3] | 丁炳辉, 韩少辉, 熊海青, 王本花, 左伯军, 宋相志. 高选择性比率型荧光探针用于急性肺损伤中次氯酸的检测[J]. 有机化学, 2023, 43(8): 2878-2884. |
[4] | 刘飞冉, 敬静, 张小玲. 细胞器靶向型半胱氨酸荧光探针研究进展[J]. 有机化学, 2023, 43(6): 2053-2067. |
[5] | 李宜芳, 王耀, 牛华伟, 陈秀金, 李兆周, 王永国. 线粒体靶向的二氧化硫荧光探针研究进展[J]. 有机化学, 2023, 43(6): 1952-1962. |
[6] | 刘甜甜, 张鸿鹏, 焦晓梦, 白银娟. 多信号同时检测生物硫醇荧光探针的研究进展[J]. 有机化学, 2023, 43(6): 2081-2095. |
[7] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[8] | 陈志华, 胡艳, 马丽丽, 张子怡, 刘传祥. 基于氢化吡啶辅助氨基氧化策略的次氯酸根荧光探针的设计、合成及其性能研究[J]. 有机化学, 2023, 43(2): 718-724. |
[9] | 唐宏伟, 王超, 钟克利, 侯淑华, 汤立军, 边延江. 一种裸眼和荧光双通道快速检测Hg2+的探针及其多种应用[J]. 有机化学, 2023, 43(2): 712-717. |
[10] | 周五, 彭敏, 梁庆祥, 吴爱斌, 舒文明, 余维初. 高选择和高灵敏检测溶液和气相中硫化氢的新型萘酰亚胺类开启型荧光探针[J]. 有机化学, 2023, 43(12): 4277-4283. |
[11] | 刘梦, 黄延茹, 孙小飞, 汤立军. 一种基于“聚集诱导发光+激发态分子内质子转移”机制的苯并噻唑衍生物荧光探针及其对次氯酸根的识别[J]. 有机化学, 2023, 43(1): 345-351. |
[12] | 李阳阳, 孙小飞, 胡晓玲, 任源远, 钟克利, 燕小梅, 汤立军. 三苯胺衍生物的合成及其基于聚集诱导发光(AIE)机理对汞离子“OFF-ON”荧光识别[J]. 有机化学, 2023, 43(1): 320-325. |
[13] | 张继东, 颜婉琳, 胡文强, 郭典, 张大龙, 权校昕, 卜贤盼, 陈思宇. 一种具有聚集诱导发光性能的Zn2+荧光探针的设计合成[J]. 有机化学, 2023, 43(1): 326-331. |
[14] | 马延慧, 武宇乾, 王晓旭, 高贵, 周欣. 基于1,3-二氯-7-羟基-9,9-二甲基-2(9H)-吖啶酮(DDAO)的近红外荧光探针研究进展[J]. 有机化学, 2023, 43(1): 94-111. |
[15] | 杨雅馨, 陈琳, 胡晓玲, 钟克利, 李世迪, 燕小梅, 张璟琳, 汤立军. 一种点亮型硫化氢荧光探针的合成及其在红酒和细胞中的应用[J]. 有机化学, 2023, 43(1): 308-312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||