有机化学 ›› 2023, Vol. 43 ›› Issue (11): 3930-3938.DOI: 10.6023/cjoc202304005 上一篇 下一篇
研究论文
收稿日期:
2023-04-04
修回日期:
2023-06-02
发布日期:
2023-07-05
基金资助:
Zhixia Jing, Jianxi Du, Ping Jiang, Keyume Ablajan()
Received:
2023-04-04
Revised:
2023-06-02
Published:
2023-07-05
Contact:
E-mail: Supported by:
文章分享
1,3,4-噁二唑衍生物是一类重要的生物活性分子, 表现出良好的抗菌、抗炎和抗癌活性. 该研究发展了一种无碱、无金属条件下, 以酰肼和烷基酰胺为原料, 一锅法构建五元杂环噁二唑的有效合成方法. 反应10 h, 即可以高达85%的收率得到预期的1,3,4-噁二唑衍生物. 该方法具有操作简单、条件温和、副产物少和底物范围广等优点. 并且可以实现克级制备, 展示出良好的实用价值. 机理研究表明酰胺自身电子云的互变异构和四丁基碘化胺(TBAI)以及酰肼羰基的活性作用对反应的发生起到了至关重要的作用.
景智霞, 杜建喜, 蒋平, 阿布拉江•克依木. 四丁基碘化胺介导烷基酰胺与酰肼一锅法构建1,3,4-噁二唑衍生物[J]. 有机化学, 2023, 43(11): 3930-3938.
Zhixia Jing, Jianxi Du, Ping Jiang, Keyume Ablajan. Tetrabutylammonium Iodide-Mediated One-Pot Construction of 1,3,4-Oxadiazole Derivatives with Alkyl Amide and Hydrazine[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3930-3938.
Entry | Oxidant (equiv.) | Solvent/mL | Temp/℃ | Yieldb/% |
---|---|---|---|---|
1 | I2 (1) | PhCH3 | 100 | 75 |
2 3 4 5 6 | I2 (1) I2 (1) I2 (1) I2 (1) I2 (1) | H2O DMSO DCE DCE CH3CH2OH | 100 100 100 90 80 | n.d n.d 78 50 n.d |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 | K2S2O8 (1) NBS (1) NCS (1) TBAI (1) — PhI(OAc)2 (1) IBX (1) KI (1) NH4I (1) NaI (1) TBAI (0.5) TBAI (2) TBAI (0.5) TBAI (0.5) | DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE | 100 100 100 100 100 100 100 100 100 100 100 100 90 80 | n.d 75 n.d 81 n.d n.d n.d n.d n.d n.d 85 79 38 n.d |
Entry | Oxidant (equiv.) | Solvent/mL | Temp/℃ | Yieldb/% |
---|---|---|---|---|
1 | I2 (1) | PhCH3 | 100 | 75 |
2 3 4 5 6 | I2 (1) I2 (1) I2 (1) I2 (1) I2 (1) | H2O DMSO DCE DCE CH3CH2OH | 100 100 100 90 80 | n.d n.d 78 50 n.d |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 | K2S2O8 (1) NBS (1) NCS (1) TBAI (1) — PhI(OAc)2 (1) IBX (1) KI (1) NH4I (1) NaI (1) TBAI (0.5) TBAI (2) TBAI (0.5) TBAI (0.5) | DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE DCE | 100 100 100 100 100 100 100 100 100 100 100 100 90 80 | n.d 75 n.d 81 n.d n.d n.d n.d n.d n.d 85 79 38 n.d |
[1] |
(a) Fan, Y.; He, Y.; Liu, X.; Hu, T.; Ma, H.; Yang, X.; Luo, X.; Huang, G. J. Org. Chem. 2016, 81, 6820.
doi: 10.1021/acs.joc.6b01135 |
(b) Bozorov, K.; Nie, L. F.; Zhao, J.; Aisa, H. A. Eur. J. Med. Chem. 2017, 140, 465.
doi: 10.1016/j.ejmech.2017.09.039 |
|
(c) Liu, S.; Zhao, Z.; Wang, Y. Chem.-Eur. J. 2019, 25, 2423.
doi: 10.1002/chem.v25.10 |
|
(d) Bostrom, J.; Hogner, A.; Llinas, A.; Wellner, E.; Plowright, A. T. J. Med. Chem. 2012, 55, 1817.
doi: 10.1021/jm2013248 |
|
[2] |
(a) Aksenov, A. V.; Khamraev, V.; Aksenov, N. A.; Kirilov, N. K.; Domenyuk, D. A.; Zelensky, V. A.; Rubin, M. RSC Adv. 2019, 9, 6636.
doi: 10.1039/C9RA00976K pmid: 24972008 |
(b) Abd-Ellah, H. S.; Abdel-Aziz, M.; Shoman, M. E.; Beshr, E. A.; Kaoud, T. S.; Ahmed, A. F. Bioorg. Chem. 2016, 69, 48.
doi: S0045-2068(16)30136-5 pmid: 24972008 |
|
(c) Boudreau, M. A.; Ding, D.; Meisel, J. E.; Janardhanan, J.; Spink, E.; Peng, Z.; Qian, Y.; Yamaguchi, T.; Testero, S. A.; O'Daniel, P. I.; Leemans, E.; Lastochkin, E.; Song, W.; Schroeder, V. A.; Wolter, W. R.; Suckow, M. A.; Mobashery, S.; Chang, M. ACS Med. Chem. Lett. 2020, 11, 322.
doi: 10.1021/acsmedchemlett.9b00379 pmid: 24972008 |
|
(d) Padejjar Vasantha, S.; Poojary, B.; Bistuvalli Chandrashekarappa, R. J. Chin. Chem. Soc. 2019, 66, 638.
doi: 10.1002/jccs.2019.66.issue-6 pmid: 24972008 |
|
(e) Wang, P. Y.; Zhou, L.; Zhou, J.; Wu, Z. B.; Xue, W.; Song, B. A.; Yang, S. Bioorg. Med. Chem. Lett. 2016, 26, 1214.
doi: 10.1016/j.bmcl.2016.01.029 pmid: 24972008 |
|
(f) Valente, S.; Trisciuoglio, D.; Luca, T. D.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Bufalo, D. D.; Altucci, L.; Mai, A. J. Med. Chem. 2014, 57, 6259.
doi: 10.1021/jm500303u pmid: 24972008 |
|
[3] |
(a) Najare, M. S.; Patil, M. K.; Nadaf, A. A.; Mantur, S.; Garbhagudi, M.; Gaonkar, S.; Inamdar, S. R.; Khazi, I. A. M. J. Mol. Struct. 2020, 1199.
|
(b) Liu, Y.; Xing, K. Q.; Deng, J. Y.; Zhu, M. X.; Wang, X. Y.; Zhu, W. G. Chin. Chem. Lett. 2007, 18, 573.
doi: 10.1016/j.cclet.2007.03.028 |
|
[4] |
(a) Weng, C.; Liu, Z.; Guo, H.; Tan, S. Macromol. Chem. Phys. 2017, 218, 170094.
|
(b) Chwarzer, K.; Tullmann, C. P.; Grassl, S.; Gorski, B.; Brocklehurst, C. E.; Knochel, P. Org. Lett. 2020, 22, 1899.
doi: 10.1021/acs.orglett.0c00238 |
|
(c) Hou, R. B.; Su, J. Y.; Zhang, L. L.; Li, D. F.; Xia, Y. J. Chem. Res. 2019, 43, 3.
|
|
[5] |
(a) Stabile, P.; Lamonica, A.; Ribecai, A.; Castoldi, D.; Guercio, G.; Curcuruto, O. Tetrahedron Lett. 2010, 51, 4801.
|
(b) Li, M. F.; Wang, R.; Hao, W. J.; Jiang, B. Chin. J. Org. Chem. 2020, 40, 1540. (in Chinese)
doi: 10.6023/cjoc202002029 |
|
(李梦帆, 王榕, 郝文娟, 姜波, 有机化学, 2020, 40, 1540.)
doi: 10.6023/cjoc202002029 |
|
(c) Zhang, X.; He, J.; Cao, S. Asian J. Org. Chem. 2019, 8, 279.
doi: 10.1002/ajoc.v8.2 |
|
(d) Fugard, A. J.; Thompson, B. K.; Slawin, A. M.; Taylor, J. E.; Smith, A. D. Org. Lett. 2015, 17, 5824.
doi: 10.1021/acs.orglett.5b02997 |
|
(e) Green, L.; Livingstone, K.; Bertrand, S.; Peace, S.; Jamieson, C. Chem.-Eur. J. 2020, 26, 14866.
doi: 10.1002/chem.v26.65 |
|
[6] |
(a) Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Org. Lett. 2015, 17, 2960.
doi: 10.1021/acs.orglett.5b01241 |
(b) Shivi, B.; Monika, G. J. Chem. Pharm. Res. 2011, 3, 137.
|
|
[7] |
Li, Q.; Tao, Y.; Xu, D.; Zhang, H.; Duan, L. J. Chin. Chem. Soc. 2014, 61, 665.
doi: 10.1002/jccs.v61.6 |
[8] |
(a) Niu, P.; Kang, J.; Tian, X.; Song, L.; Liu, H.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2015, 80, 1018.
doi: 10.1021/jo502518c pmid: 31368711 |
(b) Chauhan, J.; Ravva, M. K.; Sen, S. Org. Lett. 2019, 21, 6562.
doi: 10.1021/acs.orglett.9b02542 pmid: 31368711 |
|
[9] |
Wang, Q.; Wang, X.; Liu, Q.; Xie, G.; Ding, S.; Wang, X.; Fan, H. Org. Chem. Front. 2020, 7, 3912.
doi: 10.1039/D0QO01068E |
[10] |
Fugard, A. J.; Thompson, B. K.; Slawin, A. M.; Taylor, J. E.; Smith, A. D. Org. Lett. 2015, 17, 5824.
doi: 10.1021/acs.orglett.5b02997 |
[11] |
Lu, F.; Gong, F.; Li, L. Eur. J. Org. Chem. 2020, 3257.
|
[12] |
(a) Li, A. F.; Ruan, Y. B.; Jiang, Q. Q.; He, W. B.; Jiang, Y. B. Chem.-Eur. J. 2010, 16, 5794.
doi: 10.1002/chem.v16:19 pmid: 31368711 |
(b) Pouliot, M. F.; Angers, L.; Hamel, J. D.; Paquin, J. F. Org. Biomol. Chem. 2012, 10, 988.
doi: 10.1039/C1OB06512B pmid: 31368711 |
|
(c) Chauhan, J.; Ravva, M. K.; Sen, S. Org. Lett. 2019, 21, 6562.
doi: 10.1021/acs.orglett.9b02542 pmid: 31368711 |
|
[13] |
Yu, W.; Huang, G.; Zhang, Y. T.; Liu, H. X.; Dong, L. H.; Yu, X. J.; Li, Y. J.; Chang, J. B. J. Org. Chem. 2013, 78, 10337.
doi: 10.1021/jo401751h |
[14] |
Wang, L.; Wang, Y. Y; Chen, Q.; He, M. Y. Tetrahedron Lett. 2018, 59, 1489.
doi: 10.1016/j.tetlet.2018.03.005 |
[15] |
Wang, Q.; Wang, X.; Liu, Q.; Xie, G.; Ding, S.; Wang, X. X; Fan, H. Org. Chem. Front. 2020, 7, 3912.
doi: 10.1039/D0QO01068E |
[16] |
Shu, W. M.; Zhang, X. Zhang, X. X.; Li, M.; Wang, A. J.; Wu, A. X. J. Org. Chem. 2019, 84, 14919.
doi: 10.1021/acs.joc.9b02250 |
[17] |
Wang, S.; Wang, K.; Kong, X.; Zhang, S.; Jiang, G.; Ji, F. Adv. Synth. Catal. 2019, 361, 3986.
doi: 10.1002/adsc.v361.17 |
[18] |
(a) Wang, Q.; Mgimpatsang, K. C.; Konstantinidou, M.; Shishkina, S. V.; Dömling, A. Org. Lett. 2019, 21, 7320.
doi: 10.1021/acs.orglett.9b02614 |
(b) Zhang, L.; Yu, Y.; Tang, Q.; Yuan, J.; Ran, D.; Tian, B.; Pan, T.; Gan, Z. Synth. Commun. 2019, 50, 423.
doi: 10.1080/00397911.2019.1700521 |
|
[19] |
(a) Suresh, D.; Kanagaraj, K.; Pitchumani, K. Tetrahedron Lett. 2014, 55, 3678.
doi: 10.1016/j.tetlet.2014.05.004 |
(b) Wang, Y.; Meng, Xu.; Yang, Y. T.; Chen, B. H. Chem. Commun. 2015, 51, 1907.
|
|
[20] |
Majji, G.; Rout, S. K.; Guin, S.; Gogoi, A.; Patel, B. K. RSC Adv. 2014, 4, 5357.
doi: 10.1039/c3ra44897e |
[21] |
Su, X. L.; Ye, L.; Chen, J. J.; Liu, X. D.; Jiang, S. P.; Jiang, F. L.; Liu, X. Y. Angew. Chem., Int. Ed. 2021, 60, 380.
doi: 10.1002/anie.v60.1 |
[22] |
Zou, L. H.; Reball, J.; Mottweiler, J.; Bolm, C. Chem. Commun. 2012, 48, 11307.
doi: 10.1039/c2cc36711d |
[23] |
(a) Zhang, Q. W.; Wang, B.; Ma, H. F.; Ablajan, K. New J. Chem. 2019, 43, 17000.
doi: 10.1039/C9NJ03076J |
(b) Jia, Y. F.; Ablajan, K. Adv. Synth. Catal. 2023, 365, 244.
doi: 10.1002/adsc.v365.2 |
|
(c) Liang, J.; Ma, H. F.; Ablajan, K. Chin. J. Org. Chem. 2019, 39, 3169.
doi: 10.6023/cjoc201904028 |
|
[24] |
(a) Siwach, A.; Verma, P. K. BMC Chem. 2020, 14, 70.
doi: 10.1186/s13065-020-00721-2 pmid: 33372629 |
(b) Gao, P.; Wang, J.; Bai, Z.; Cheng, H.; Xiao, J.; Lai, M.; Yang, D.; Fan, M. Tetrahedron Lett. 2016, 57, 4616.
doi: 10.1016/j.tetlet.2016.09.007 pmid: 33372629 |
|
(c) Dong, D. Q.; Zhang, H.; Wang, Z. L. RSC Adv. 2017, 7, 3780.
doi: 10.1039/C6RA26387A pmid: 33372629 |
|
(d) Li, L. X.; Dong, D. Q.; Hao, S. H.; Wang, Z. L. Tetrahedron Lett. 2018, 59, 1517.
doi: 10.1016/j.tetlet.2018.03.023 pmid: 33372629 |
|
[25] |
Zahra, D. G.; Karim, A. D. J. Chin. Chem. Soc. 2020, 67, 1446.
doi: 10.1002/jccs.v67.8 |
[26] |
Gnanasekaran, K. K.; Nammalwar, B.; Murie, M.; Bunce, R. A. Tetrahedron Lett. 2014, 55, 6776.
doi: 10.1016/j.tetlet.2014.10.028 |
[27] |
Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2008, 49, 879.
doi: 10.1016/j.tetlet.2007.11.165 |
[1] | 王永玲, 张铁欣, 张栩铭, 孙晗扬, 冷津瑶, 李亚明. 可见光催化N-芳基乙醛酸亚胺脱羧烷基化合成非天然氨基酸衍生物[J]. 有机化学, 2023, 43(12): 4284-4293. |
[2] | 乃比江•赛米, 张蕾, 买地娜•沙拉木, 曾竟, 阿布都热西提•阿布力克木. 硫代磺酸酯和磺酰卤的绿色合成研究[J]. 有机化学, 2023, 43(1): 236-243. |
[3] | 王苛莉, 黄静, 刘伟, 伍智林, 于贤勇, 蒋俊, 何卫民. 由N-(2-丙炔基)苯胺和磺酰氯直接合成3-砜基喹啉[J]. 有机化学, 2022, 42(8): 2527-2534. |
[4] | 张文生, 李焱, 崔海燕, 苏小莉, 徐素鹏. 邻甲酰基苯甲酸甲酯还原胺化/内酰胺化一锅法合成N-取代异吲哚-1-酮[J]. 有机化学, 2022, 42(8): 2456-2461. |
[5] | 袁飞, 赵艳, 郭青松, 尹福丹, 赖金荣, 念倍芳, 张明, 汤峨. 乙烯基硒盐参与的串联反应合成1-[1-(胺基)环丙基]酮化合物[J]. 有机化学, 2022, 42(6): 1759-1769. |
[6] | 罗享豪, 谢益碧, 黄年玉, 王龙. 基于原位捕获异腈的Ugi四组分反应及其后修饰串联反应: 一锅法合成含氮杂环化合物[J]. 有机化学, 2022, 42(3): 838-846. |
[7] | 郭钰钰, 陈祥杰, 李师伍, 蔡志华, 何林. 2-芳基乙烯苯并咪唑串联反应合成多取代二氢吡啶并[1,2-a]苯并咪唑衍生物[J]. 有机化学, 2021, 41(9): 3692-3700. |
[8] | 李曼, 汪颖, 徐允河. 钯催化串联Heck环化反应制备氮杂桥环化合物[J]. 有机化学, 2021, 41(8): 3073-3082. |
[9] | 陈任宏, 吴桂贞, 杨凯, 叶斌, 陈庆凤, 汪朝阳. 一锅法合成N-呋喃酮基磺酰腙类化合物[J]. 有机化学, 2021, 41(7): 2750-2759. |
[10] | 刘金妮, 谢益碧, 阳青青, 黄年玉, 王龙. 基于原位捕获胺的Ugi四组分反应及其后修饰串联环化反应:“一锅法”合成六元、七元杂环化合物[J]. 有机化学, 2021, 41(6): 2374-2383. |
[11] | 胡智宇, 姜国芳, 祝志强, 龚伯桢, 谢宗波, 乐长高. 深共融溶剂促进的亨利-傅克烷基化串联反应[J]. 有机化学, 2021, 41(1): 325-332. |
[12] | 李阳, 董时雨, 秦洪伟, 唐冰月, 高文涛, 陈羽. 新型3-芳乙烯基喹喔啉-2-羧酸合成及结核杆菌亮氨酰-tRNA合成酶的抑制活性研究[J]. 有机化学, 2020, 40(9): 2817-2826. |
[13] | 姚明, 张静静, 杨森, 熊航行. γ-三氧化二铝促进的炔烃碘代反应研究[J]. 有机化学, 2020, 40(7): 2153-2158. |
[14] | 郭欣, 郭亚军, 孔德志, 卢会杰, 华远照, 王敏灿. 四氢呋喃螺氧化吲哚衍生物的一锅法高效合成[J]. 有机化学, 2020, 40(7): 1999-2007. |
[15] | 何淑旺, 颜世强, 郭伟, 翟光喜, 张伟. 苯乙烯一锅法合成氨基醇[J]. 有机化学, 2020, 40(7): 2094-2098. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||