有机化学 ›› 2023, Vol. 43 ›› Issue (12): 4057-4074.DOI: 10.6023/cjoc202305008 上一篇 下一篇
综述与进展
郝二军a,*(), 丁笑波a, 王珂新a, 周红昊a, 杨启亮a, 石磊a,b,*()
收稿日期:
2023-05-09
修回日期:
2023-07-11
发布日期:
2023-08-30
基金资助:
Erjun Haoa,*(), Xiaobo Dinga, Kexin Wanga, Honghao Zhoua, Qiliang Yanga, Lei Shia,b,*()
Received:
2023-05-09
Revised:
2023-07-11
Published:
2023-08-30
Contact:
*E-mail: Supported by:
文章分享
由于具有较强的环张力, 氮杂环丙烷能够与多种不饱和化合物发生[3+2]扩环反应构建氮杂环骨架结构. 这些氮杂环化合物是许多药物、天然产物和生物活性分子的核心结构, 同时也是一类重要的有机反应中间体, 在医药、农业、化工、有机合成等领域具有十分广泛的用途. 近年来, 许多化学研究者以氮杂环丙烷作为合成子, 构建了结构复杂的杂环结构, 促进了氮杂环丙烷领域的快速发展. 对近十年来烯烃、炔烃、醛、酮、腈等含有不饱和键的化合物与氮杂环丙烷发生的[3+2]扩环反应进行了综述, 并对该领域的发展方向进行了展望.
郝二军, 丁笑波, 王珂新, 周红昊, 杨启亮, 石磊. 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023, 43(12): 4057-4074.
Erjun Hao, Xiaobo Ding, Kexin Wang, Honghao Zhou, Qiliang Yang, Lei Shi. Recent Progress on [3+2] Ring-Expansion Reaction of Aziridines with Unsaturated Compounds[J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4057-4074.
[1] |
Ohno H. Chem. Rev. 2014, 114, 7784
doi: 10.1021/cr400543u |
[2] |
Ilardi E. A.; Njardarson J. T. J. Org. Chem. 2013, 78, 9533.
doi: 10.1021/jo401776s |
[3] |
Wu Y.; Zhou X.; Xiao W.; Chen J. Chin. J. Org. Chem. 2020, 40, 3760. (in Chinese)
doi: 10.6023/cjoc202003061 |
(吴雅莉, 周雪松, 肖文精, 陈加荣, 有机化学, 2020, 40, 3760.)
doi: 10.6023/cjoc202003061 |
|
[4] |
Du T.; Li S.; He Y.; Long H.; Liu X.; Li H. B.; Liu L. Chin. J. Chem. 2022, 40, 1681.
doi: 10.1002/cjoc.v40.14 |
[5] |
Xu B.; Zhang Z. M.; Han J.; Gu G.; Zhang J. Chin. J. Chem. 2022, 40, 1407.
doi: 10.1002/cjoc.v40.12 |
[6] |
Kini G. D.; Hennen W. J.; Robins R. K. J. Org. Chem. 1986, 51, 4436.
doi: 10.1021/jo00373a017 |
[7] |
Arredondo V. M.; Tian S.; McDonald F. E.; Marks T. J. J. Am. Chem. Soc. 1999, 121, 3633.
doi: 10.1021/ja984305d |
[8] |
Butler M. S. J. Nat. Prod. 2004, 67, 2141.
doi: 10.1021/np040106y pmid: 15620274 |
[9] |
Magedov I. V.; Luchetti G.; Evdokimov N. M.; Manpadi M.; Steelant W. F. A.; Van slambrouck S.; Tongwa P.; Antipin M. Y.; Kornienko A. Bioorg. Med. Chem. Lett. 2008, 18, 1392.
doi: 10.1016/j.bmcl.2008.01.019 pmid: 18221874 |
[10] |
More S. S.; Mohan T. K.; Kumar Y. S.; Kumar U. K.; Patel N. B. Beilstein J. Org. Chem. 2011, 7, 831.
doi: 10.3762/bjoc.7.95 |
[11] |
Cai C.; Hu B.; Lü C. Chin. J. Org. Chem. 2005, 25, 1311. (in Chinese)
|
(蔡超君, 胡炳成, 吕春绪, 有机化学, 2005, 25, 1311.)
|
|
[12] |
Wang Q.; Chang H.; Wei W.; Liu Q.; Gao W.; Li Y.; Li X. Chin. J. Org. Chem. 2016, 36, 939. (in Chinese)
|
(王清宇, 常宏宏, 魏文珑, 刘强, 高文超, 李彦威, 李兴, 有机化学, 2016, 36, 939.)
doi: 10.6023/cjoc201511039 |
|
[13] |
Gao Y.; Xiao Z.; Liu L.; Huang P. Chin. J. Org. Chem. 2017, 37, 1189. (in Chinese)
doi: 10.6023/cjoc201703024 |
(高燕娇, 肖振华, 刘良先, 黄培强, 有机化学, 2017, 37, 1189.)
doi: 10.6023/cjoc201703024 |
|
[14] |
Feng J.-J.; Zhang J. ACS Catal. 2016, 6, 6651.
doi: 10.1021/acscatal.6b02072 |
[15] |
Lowe M. A.; Ostovar M.; Ferrini S.; Chen C. C.; Lawrence P. G.; Fontana F.; Calabrese A. A.; Aggarwal V. K. Angew. Chem., Int. Ed. 2011, 50, 6370.
doi: 10.1002/anie.v50.28 |
[16] |
Takahashi H.; Yasui S.; Tsunoi S.; Shibata I. Org. Lett. 2014, 16, 1192.
doi: 10.1021/ol500062a pmid: 24495160 |
[17] |
Xu C.-F.; Zheng B.-H.; Suo J.-J.; Ding C.-H.; Hou X.-L. Angew. Chem., Int. Ed. 2015, 54, 1604.
doi: 10.1002/anie.v54.5 |
[18] |
Huang Y.; Zheng C.; Pan L.; Jin Q.; Zhao G. J. Org. Chem. 2015, 80, 10710.
doi: 10.1021/acs.joc.5b01931 |
[19] |
Lin T. Y.; Zhu C. Z.; Zhang P.; Wang Y.; Wu H. H.; Feng J. J.; Zhang J. Angew. Chem., Int. Ed. 2016, 55, 10844.
doi: 10.1002/anie.v55.36 |
[20] |
Feng J. J.; Lin T. Y.; Zhu C. Z.; Wang H.; Wu H. H.; Zhang J. J. Am. Chem. Soc. 2016, 138, 2178.
doi: 10.1021/jacs.6b00386 |
[21] |
Wang B.; Liang M.; Tang J.; Deng Y.; Zhao J.; Sun H.; Tung C. H.; Jia J.; Xu Z. Org. Lett. 2016, 18, 4614.
doi: 10.1021/acs.orglett.6b02253 pmid: 27574831 |
[22] |
Hao W.; Wu X.; Sun J. Z.; Siu J. C.; MacMillan S. N.; Lin S. J. Am. Chem. Soc. 2017, 139, 12141.
doi: 10.1021/jacs.7b06723 |
[23] |
Rivinoja D. J.; Gee Y. S.; Gardiner M. G.; Ryan J. H.; Hyland C. J. T. ACS Catal. 2017, 7, 1053.
doi: 10.1021/acscatal.6b03248 |
[24] |
Zhu C.; Feng J.; Zhang J. Chin. J. Org. Chem. 2017, 37, 1165. (in Chinese)
doi: 10.6023/cjoc201701043 |
(朱超泽, 冯见君, 张俊良, 有机化学, 2017, 37, 1165.)
doi: 10.6023/cjoc201701043 |
|
[25] |
Zhu C. Z.; Feng J. J.; Zhang J. Chem. Commun. 2018, 54, 2401.
doi: 10.1039/C8CC00279G |
[26] |
Suo J. J.; Liu W.; Du J.; Ding C. H.; Hou X. L. Chem. Asian. J. 2018, 13, 959.
doi: 10.1002/asia.v13.8 |
[27] |
Zhang J. Q.; Tong F.; Sun B. B.; Fan W. T.; Chen J. B.; Hu D.; Wang X. W. J. Org. Chem. 2018, 83, 2882.
doi: 10.1021/acs.joc.8b00046 |
[28] |
Wan S.-H.; Liu S.-T. Tetrahedron 2019, 75, 1166.
doi: 10.1016/j.tet.2019.01.022 |
[29] |
Xiao S.; Chen B.; Jiang Q.; He L.; Chu W.-D.; He C.-Y.; Liu Q.-Z. Org. Chem. Front. 2021, 8, 3729.
doi: 10.1039/D1QO00408E |
[30] |
Zhu G. S.; Yang P. J.; Ma C. X.; Yang G.; Chai Z. Org. Lett. 2021, 23, 7933.
doi: 10.1021/acs.orglett.1c02931 |
[31] |
Dong P.; Chen L.; Yang Z.; Dong S.; Feng X. Org. Chem. Front. 2021, 8, 6874.
doi: 10.1039/D1QO01194D |
[32] |
Shcherbakov N. V.; Titov G. D.; Chikunova E. I.; Filippov I. P.; Rostovskii N. V.; Kukushkin V. Y.; Dubovtsev A. Y. Org. Chem. Front. 2022, 9, 5133.
doi: 10.1039/D2QO01105K |
[33] |
Griffin K.; Montagne C.; Hoang C. T.; Clarkson G. J.; Shipman M. Org. Biomol. Chem. 2012, 10, 1032.
doi: 10.1039/c1ob06578e pmid: 22159193 |
[34] |
Arena G.; Chen C. C.; Leonori D.; Aggarwal V. K. Org. Lett. 2013, 15, 4250.
doi: 10.1021/ol4020333 |
[35] |
Wang L.; Yang D.; Han F.; Li D.; Zhao D.; Wang R. Org. Lett. 2015, 17, 176.
doi: 10.1021/ol503455r |
[36] |
Hashimoto T.; Takino K.; Hato K.; Maruoka K. Angew. Chem., Int. Ed. 2016, 55, 8081.
doi: 10.1002/anie.v55.28 |
[37] |
Cardoso A. L.; Henriques M. S.; Paixao J. A.; Pinho E. M. T. M. J. Org. Chem. 2016, 81, 9028.
pmid: 27606692 |
[38] |
Wang Y. N.; Li T. R.; Zhang M. M.; Cheng B. Y.; Lu L. Q.; Xiao W. J. J. Org. Chem. 2016, 81, 10491.
doi: 10.1021/acs.joc.6b00991 |
[39] |
Liao Y.; Zhou B.; Xia Y.; Liu X.; Lin L.; Feng X. ACS Catal. 2017, 7, 3934.
doi: 10.1021/acscatal.7b00787 |
[40] |
Alajarin M.; Bañon D.; Egea A.; Marín-Luna M.; Orenes R.-A.; Vidal A. Org. Chem. Front. 2018, 5, 2020.
doi: 10.1039/C8QO00255J |
[41] |
Xing S.; Xia H.; Guo J.; Zou C.; Gao T.; Wang K.; Zhu B.; Pei M.; Bai M. J. Org. Chem. 2019, 84, 8984.
doi: 10.1021/acs.joc.9b00876 |
[42] |
Rong J.; Jiang H.; Wang S.; Su Z.; Wang H.; Tao C. Org. Biomol. Chem. 2020, 18, 3149.
doi: 10.1039/D0OB00346H |
[43] |
Zhao Q. Q.; Zhou X. S.; Xu S. H.; Wu Y. L.; Xiao W. J.; Chen J. R. Org. Lett. 2020, 22, 2470.
doi: 10.1021/acs.orglett.0c00712 |
[44] |
Li Y.; Chen F.; Zhu S.; Chu L. Org. Chem. Front. 2021, 8, 2196.
doi: 10.1039/D1QO00102G |
[45] |
Viceriat A.; Marchand I.; Carret S.; Poisson J. F. Org. Lett. 2021, 23, 2449.
doi: 10.1021/acs.orglett.1c00335 pmid: 33705148 |
[46] |
Wani I. A.; Sk S.; Mal A.; Sengupta A.; Ghorai M. K. Org. Lett. 2022, 24, 7867.
doi: 10.1021/acs.orglett.2c02354 |
[47] |
Xing S.; Wang Y.; Jin C.; Shi S.; Zhang Y.; Liao Z.; Wang K.; Zhu B. J. Org. Chem. 2022, 87, 6426.
doi: 10.1021/acs.joc.2c00287 |
[48] |
Buchi G.; Rodriguez A. D.; Yakushijin K. J. Org. Chem. 1989, 54, 4494.
doi: 10.1021/jo00280a009 |
[49] |
Wu X.; Zhang J. Synthesis 2012, 44, 2147.
doi: 10.1055/s-00000084 |
[50] |
Yoshiki M.; Ishibashi R.; Yamada Y.; Hanamoto T. Org. Lett. 2014, 16, 5509.
doi: 10.1021/ol502331a |
[51] |
Spielmann K.; Lee A. V.; de Figueiredo R. M.; Campagne J. M. Org. Lett. 2018, 20, 1444.
doi: 10.1021/acs.orglett.8b00228 pmid: 29437402 |
[52] |
Lin T. Y.; Wu H. H.; Feng J. J.; Zhang J. Org. Lett. 2018, 20, 3587.
doi: 10.1021/acs.orglett.8b01378 |
[53] |
Hajra S.; Abu Saleh S. K.; Hazra A.; Singh M. S. J. Org. Chem. 2019, 84, 8194.
doi: 10.1021/acs.joc.9b01226 |
[54] |
Lemaire S.; Tulkens P. M.; Bambeke F. V. Antimicrob. Agents Chemother. 2010, 54, 2540.
doi: 10.1128/AAC.01723-09 |
[55] |
Lin X.-Z.; Yang Z.-Z.; He L.-N.; Yuan Z.-Y. Green. Chem. 2015, 17, 795.
doi: 10.1039/C4GC01709A |
[56] |
Adhikari D.; Miller A. W.; Baik M.-H.; Nguyen S. T. Chem. Sci. 2015, 6, 1293.
doi: 10.1039/C4SC02785J |
[57] |
Punk M.; Merkley C.; Kennedy K.; Morgan J. B. ACS Catal. 2016, 6, 4694.
doi: 10.1021/acscatal.6b01400 |
[58] |
Zhou F.; Xie S.-L.; Gao X.-T.; Zhang R.; Wang C.-H.; Yin G.-Q.; Zhou J. Green Chem. 2017, 19, 3908.
doi: 10.1039/C7GC01458A |
[59] |
Yang P. J.; Qi L.; Liu Z.; Yang G.; Chai Z. J. Am. Chem. Soc. 2018, 140, 17211.
doi: 10.1021/jacs.8b10217 |
[60] |
Teranishi S.; Maeda K.; Kurahashi T.; Matsubara S. Org. Lett. 2019, 21, 2593.
doi: 10.1021/acs.orglett.9b00560 pmid: 30942597 |
[61] |
Intrieri D.; Damiano C.; Sonzini P.; Gallo E. J. Porphyrins Phthalocyanines 2019, 23, 305.
doi: 10.1142/S1088424619300015 |
[62] |
Sonzini P.; Damiano C.; Intrieri D.; Manca G.; Gallo E. Adv. Synth. Catal. 2020, 362, 2961.
doi: 10.1002/adsc.v362.14 |
[63] |
Seayad J.; Seayad A. M.; Ng J. K. P.; Chai C. L. L. ChemCatChem 2012, 4, 774.
doi: 10.1002/cctc.v4.6 |
[64] |
Ueno A.; Kayaki Y.; Ikariya T. Green Chem. 2013, 15, 425.
doi: 10.1039/C2GC36414J |
[65] |
Nale D. B.; Rana S.; Parida K.; Bhanage B. M. Appl. Catal., A 2014, 469, 340.
doi: 10.1016/j.apcata.2013.10.011 |
[66] |
Chen W.; Zhong L.-X.; Peng X.-w.; Sun R.-C.; Lu F.-C. ACS Sustainable Chem. Eng. 2015, 3, 147.
doi: 10.1021/sc5006445 |
[67] |
Saptal V. B.; Bhanage B. M. ChemSusChem 2016, 9, 1980.
doi: 10.1002/cssc.v9.15 |
[68] |
Liu A.-H.; Dang Y.-L.; Zhou H.; Zhang J.-J.; Lu X.-B. ChemCatChem 2018, 10, 2686.
doi: 10.1002/cctc.v10.12 |
[69] |
Sengoden M.; North M.; Whitwood A. C. ChemSusChem 2019, 12, 3296.
doi: 10.1002/cssc.201901171 pmid: 31141295 |
[70] |
Gerwick W. H.; Proteau P. J.; Nagle D. G.; Hamel E.; Blokhin A.; Slate D. L. J. Org. Chem. 1994, 59, 1243.
doi: 10.1021/jo00085a006 |
[71] |
Boyce R. J.; Mulqueen G. C.; Pattenden G. Tetrahedron 1995, 51, 7321.
doi: 10.1016/0040-4020(95)00356-D |
[72] |
Hawkins C. J.; Lavin M. F.; Marshall K. A.; Van den Brenk A. L.; Watters D. J. J. Med. Chem. 1990, 33, 1634.
pmid: 2342056 |
[73] |
Zabriskie T. M.; Foster M. P.; Stout T. J.; Clardy J.; Ireland C. M. J. Am. Chem. Soc. 1990, 112, 8080.
doi: 10.1021/ja00178a035 |
[74] |
Bhattacharyya A.; Kavitha C. V.; Ghorai M. K. J. Org. Chem. 2016, 81, 6433.
doi: 10.1021/acs.joc.6b01551 pmid: 27425856 |
[75] |
Sengoden M.; Irie R.; Punniyamurthy T. J. Org. Chem. 2016, 81, 11508.
pmid: 27731640 |
[76] |
Coin G.; Ferrier de Montal O.; Dubourdeaux P.; Latour J. M. Eur. J. Org. Chem. 2021, 2021, 443.
doi: 10.1002/ejoc.v2021.3 |
[1] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[2] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[3] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[4] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[5] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[6] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[7] | 高秋珊, 李蒙, 伍婉卿. 过渡金属催化的异腈插入反应研究进展[J]. 有机化学, 2022, 42(9): 2659-2681. |
[8] | 于帮魁, 黄汉民. 碳-杂原子键复分解反应的研究进展[J]. 有机化学, 2022, 42(8): 2376-2389. |
[9] | 乔辉杰, 杨利婷, 陈雅, 王嘉琳, 孙武轩, 董昊博, 王云威. 温和条件下高效合成咪唑并杂环-肼类衍生物的三组分串联反应[J]. 有机化学, 2022, 42(4): 1188-1197. |
[10] | 张苗苗, 韩波, 马豪杰, 赵亮, 王记江, 张玉琦. 以氢硅烷为氢源: 铱催化N-杂环化合物的氢化[J]. 有机化学, 2022, 42(4): 1170-1178. |
[11] | 洪科苗, 黄晶晶, 姚铭瀚, 徐新芳. 氮宾/炔烃复分解串联反应研究进展[J]. 有机化学, 2022, 42(2): 344-352. |
[12] | 杜青锋, 张璐, 高峰, 王乐, 张万斌. 过渡金属催化氧/氮杂环丙烷不对称开环反应的研究进展[J]. 有机化学, 2022, 42(10): 3240-3262. |
[13] | 李红霞, 陈棚, 伍智林, 陆雨函, 彭俊梅, 陈锦杨, 何卫民. 电化学促进的五元芳香杂环与硫氰酸铵氧化交叉脱氢偶联反应[J]. 有机化学, 2022, 42(10): 3398-3404. |
[14] | 王鹏, 杨妲, 刘欢. 一氧化碳参与β-内酰胺化合物合成的研究进展[J]. 有机化学, 2021, 41(9): 3448-3458. |
[15] | 刘金妮, 谢益碧, 阳青青, 黄年玉, 王龙. 基于原位捕获胺的Ugi四组分反应及其后修饰串联环化反应:“一锅法”合成六元、七元杂环化合物[J]. 有机化学, 2021, 41(6): 2374-2383. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||