有机化学 ›› 2019, Vol. 39 ›› Issue (10): 2973-2979.DOI: 10.6023/cjoc201904038 上一篇 下一篇
所属专题: 有机超分子化学合辑
研究简报
收稿日期:
2019-04-15
修回日期:
2019-05-07
发布日期:
2019-05-21
通讯作者:
唐颂超,姚远
E-mail:schtang@ecust.edu.cn;yaoyuan@ecust.edu.cn
基金资助:
Wang, Jinglina, Shen, Chengshuob, Tang, Songchaoa*(), Yao, Yuana*()
Received:
2019-04-15
Revised:
2019-05-07
Published:
2019-05-21
Contact:
Tang, Songchao,Yao, Yuan
E-mail:schtang@ecust.edu.cn;yaoyuan@ecust.edu.cn
Supported by:
文章分享
研究了包含聚肽嵌段的两亲共聚物聚乙二醇-b-聚(L-谷氨酸)(PEG-b-PGlu)与4-甲基-4-氮杂[4]螺烯鎓离子(Me[4]H)的电荷复合自组装行为, 讨论了聚肽链段长度、谷氨酸单元与螺烯物质的量比、pH值等因素对组装体形貌的影响. 研究发现, 当刚-柔型嵌段聚合物与刚性、大尺寸并具有诱导作用的小分子共同组装时, 遵循与柔性大分子电荷复合组装完全不同的规律. PEG-b-PGlu/Me[4]H的电荷复合组装体形貌由π-π堆叠作用、两亲嵌段聚肽的亲疏水比、PGlu链段的刚硬程度共同决定, 这些作用在组装过程中相互制约, 当π-π堆叠作用占主导地位时, 得到以指针状和条带状等平面结构为主的组装形貌.
王婧琳, 沈程硕, 唐颂超, 姚远. 两亲聚肽/螺烯的电荷复合自组装行为研究[J]. 有机化学, 2019, 39(10): 2973-2979.
Wang, Jinglin, Shen, Chengshuo, Tang, Songchao, Yao, Yuan. Study of Charge-Conjugated Self-Assembly Behavior of Amphiphilic Block Copolypeptides/Helicene[J]. Chinese Journal of Organic Chemistry, 2019, 39(10): 2973-2979.
Copolymer | Mn(exp)a (×104) | Mn(obt)b (×104) | DPexp,PBLGc | DPobt,PBLGd | PDI |
---|---|---|---|---|---|
PEG45-b-PBLG10 | 0.38 | 0.40 | 10 | 10 | 1.13 |
PEG45-b-PBLG24 | 0.58 | 0.66 | 20 | 24 | 1.18 |
PEG45-b-PBLG36 | 0.83 | 0.89 | 30 | 36 | 1.19 |
PEG45-b-PBLG50 | 1.10 | 1.17 | 50 | 50 | 1.06 |
PEG45-b-PBLG71 | 1.44 | 1.57 | 70 | 71 | 1.08 |
Copolymer | Mn(exp)a (×104) | Mn(obt)b (×104) | DPexp,PBLGc | DPobt,PBLGd | PDI |
---|---|---|---|---|---|
PEG45-b-PBLG10 | 0.38 | 0.40 | 10 | 10 | 1.13 |
PEG45-b-PBLG24 | 0.58 | 0.66 | 20 | 24 | 1.18 |
PEG45-b-PBLG36 | 0.83 | 0.89 | 30 | 36 | 1.19 |
PEG45-b-PBLG50 | 1.10 | 1.17 | 50 | 50 | 1.06 |
PEG45-b-PBLG71 | 1.44 | 1.57 | 70 | 71 | 1.08 |
[1] |
Gröhn, F. Soft Matter 2010, 6, 4296.
doi: 10.1039/c0sm00411a |
[2] |
Rybtchinski, B. ACS Nano 2011, 5, 6791.
doi: 10.1021/nn2025397 |
[3] |
Faul, C. F. Acc. Chem. Res. 2014, 47, 3428.
doi: 10.1021/ar500162a |
[4] |
Kim, B. G.; Kim, M. S.; Kim, J . ACS Nano 2010, 4, 2160.
doi: 10.1021/nn901568w |
[5] |
Malinsky, J. E.; Jabbour, G. E.; Shaheen, S. E.; Anderson, J. D.; Richter, A. G.; Marks, T. J.; Armstrong, N. R.; Kippelen, B.; Dutta, P.; Peyghambarian, N . Adv. Mater. 1999, 11, 227.
doi: 10.1002/(ISSN)1521-4095 |
[6] |
Palma, A.; Satta, M. J. Chem. Theory Comput. 2016, 12, 4042.
doi: 10.1021/acs.jctc.6b00430 |
[7] |
Li, Y.; Zhang, X.; Cao, D. J. Phys. Chem. B 2013, 117, 6733.
doi: 10.1021/jp312124x |
[8] |
Zhao, Y.; Mei, L.; Lu, Q . Langmuir 2008, 24, 3937.
doi: 10.1021/la703673s |
[9] |
Wicklein, A.; Ghosh, S.; Sommer, M.; Würthner, F.; Thelakkat, M . ACS Nano 2009, 3, 1107.
doi: 10.1021/nn9001165 |
[10] |
Wang, C.; Guo, Y.; Wang, Z.; Zhang, X . Langmuir 2010, 26, 14509.
doi: 10.1021/la102586b |
[11] |
Yao, Y.; Zhang, L.; Leydecker, T.; Samorì, P. J. Am. Chem. Soc. 2018, 140, 6984.
doi: 10.1021/jacs.8b03526 |
[12] |
Liu, W.; Liu, J.; Liu, W.; Li, T. J. Agric. Food Chem. 2013, 61, 4133.
doi: 10.1021/jf305329n |
[13] |
Omura, Y.; Kyung, K. H.; Shiratori, S.; Kim, S. H. Ind. Eng. Chem. Res. 2014, 53, 11727.
doi: 10.1021/ie403736r |
[14] |
Fang, R.; Zhang, H.; Yang, L.; Wang, H.; Tian, Y.; Zhang, X.; Jiang, L. J. Am. Chem. Soc. 2016, 138, 16372.
doi: 10.1021/jacs.6b09601 |
[15] |
Pappa, A. M.; Inal, S.; Roy, K.; Zhang, Y. ACS Appl. Mater. Inter. 2017, 9, 10427.
doi: 10.1021/acsami.6b15522 |
[16] |
Dochter, A.; Garnier, T.; Pardieu, E.; Chau, N. T. T.; Maerten, C.; Senger, B.; Schaaf, P.; Jierry, L.; Boulmedais, F . Langmuir 2015, 31, 10208.
doi: 10.1021/acs.langmuir.5b02749 |
[17] |
Bianchi, R. C.; Silva, E. R. D.; Antonia, L. H. D.; Ferreira, F. F.; Alves, A. W . Langmuir 2014, 30, 11464.
doi: 10.1021/la502315m |
[18] |
Deng, T.; Wang, J.; Li, Y. Y.; Han, Z. H.; Peng, Y. N.; Zhang, J.; Gao, Z.; Gu, Y. Q.; Deng, D. W. ACS Appl. Mater. Interfaces 2018, 10, 27657.
doi: 10.1021/acsami.8b08512 |
[19] |
Huang, X. H.; Jeong, Y. I.; Moon, B. K.; Zhang, L. D.; Kang, D. H.; Kim, I . Langmuir 2013, 29, 3223.
doi: 10.1021/la305069e |
[20] |
Bui, L.; Abbou, S.; Ibarboure, E.; Guidolin, N.; Staedel, C.; Toulme, J. J.; Schatz, C. J. Am. Chem. Soc. 2012, 134, 20189.
doi: 10.1021/ja310397j |
[21] |
Kumar, R. J.; Macdonald, J. M.; Singh, T. B.; Waddington, L. J.; Holmes, A. B. J. Am. Chem. Soc. 2011, 133, 8564.
doi: 10.1021/ja110858k |
[22] |
Zhang, Y.; Yin, Q.; Lu, H.; Xia, H.; Lin, Y.; Cheng, J. ACS Macro Lett. 2013, 2, 809.
doi: 10.1021/mz4003672 |
[23] |
Shaikh, A. Y.; Das, S.; Pati, D.; Dhaware, V.; Sen, G. S.; Hotha, S . Biomacromolecules 2014, 15, 3679.
doi: 10.1021/bm5009537 |
[24] |
Ramasamy, T.; Choi, J. Y.; Cho, H. J.; Umadevi, S. K.; Shin, B. S.; Choi, H. G.; Yong, C. S.; Kin, J. O . Pharm. Res. 2015, 32, 1947.
doi: 10.1007/s11095-014-1588-8 |
[25] |
He, W.; Yan, J.; Jiang, W.; Li, S.; Qu, Y.; Niu, F.; Yan, Y.; Sui, F.; Wang, S.; Zhou, Y.; Jin, L.; Li, Y.; Ji, M.; Ma, P. X.; Liu, W.; Hou, P . Chem. Mater. 2018, 30, 7034.
doi: 10.1021/acs.chemmater.8b02572 |
[26] |
Yan, J.; Korolev, N.; Eom, K. D.; Tam, J. P.; Nordenskiöld, L . Biomacromolecules 2012, 13, 124.
doi: 10.1021/bm201359r |
[27] |
Nishimura, T.; Yamada, A.; Umezaki, K.; Sawada, S. I.; Mukai, S. A.; Sasaki, Y.; Akiyoshi, K . Biomacromolecules 2017, 18, 3913.
doi: 10.1021/acs.biomac.7b00937 |
[28] |
Ryu, K.; Lee, M.; Park, J.; Kim, T. ACS Appl. Bio. Mater. 2018, 1, 1496.
doi: 10.1021/acsabm.8b00428 |
[29] | Zhang, S.; Cai, C.-H.; Huang, Q.-J.; Lin, J.-P.; Xu, Z.-W . Acta Polym. Sin. 2018,109(in Chinese). |
( 张朔, 蔡春华, 黄琦婧, 林嘉平, 徐占文 , 高分子学报, 2018,109.) | |
[30] |
Hu, Y.; Lin, R.; Zhang, P.; Fern, J.; Cheetham, A. G.; Patel, K.; Schulman, R.; Kan, C.; Cui, H . ACS Nano 2015, 10, 880.
doi: 10.1021/acsnano.5b06011 |
[31] |
Schuster, N. J.; Hernández, S. R.; Bukharina, D.; Kotov, N. A.; Berova, N.; Nq, F.; Steiqerwald, M. L.; Nuckolls, C. J. Am. Chem. Soc. 2018, 140, 6235.
doi: 10.1021/jacs.8b03535 |
[32] | Nishiyma, N.; Okazaki, S.; Cabral, H.; Miyamto, M.; Kato, Y.; Suqiyama, Y.; Nishio, K.; Matsumura, Y.; Kataoka, K . Cancer Res. 2003, 63, 8977. |
[33] |
Lv, S.; Li, M.; Tang, Z.; Song, W.; Sun, H.; Liu, H.; Chen, X . Acta Biomater. 2013, 9, 9330.
doi: 10.1016/j.actbio.2013.08.015 |
[34] |
Song, W.; Tang, Z.; Li, M.; Lv, M.; Sun, H.; Deng, M.; Liu, H.; Chen, X . Acta Biomater. 2014, 10, 1392.
doi: 10.1016/j.actbio.2013.11.026 |
[35] | Verbiest, T.; Elshocht, S. V.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A . Science 1999, 561, 913. |
[36] |
Fang, L.; Lin, W.-B.; Shen, Y.; Chen, C.-F. Chin. J. Org. Chem. 2018, 38, 541 (in Chinese).
doi: 10.6023/cjoc201710028 |
( 房蕾, 林伟彬, 沈赟, 陈传峰, 有机化学, 2018, 38, 541.)
doi: 10.6023/cjoc201710028 |
|
[37] |
Kaseyama, T.; Furumi, S.; Zhang, X.; Takeuchi, M. Angew. Chem., Int. Ed. 2011, 123, 3768.
doi: 10.1002/ange.201007849 |
[38] | Hewlins, M, J, E.; Salter, R . Synthesis 2007,2164. |
[39] |
Yao, Y.; Li, W. W.; Wang, S. B.; Yan, D. Y.; Chen, X. S . Macromol. Rapid Commun. 2006, 27, 2019.
doi: 10.1002/(ISSN)1521-3927 |
[1] | 陈星宇, 李继坤, 王小野. 通过Scholl反应合成螺烯类纳米碳分子的研究进展[J]. 有机化学, 2021, 41(11): 4105-4137. |
[2] | 刘秉康, 张艳丽, 陈瑜, 刘旭光, 张磊. 硼氮[4]螺烯的合成、表征及光物理性质研究[J]. 有机化学, 2020, 40(9): 2879-2887. |
[3] | 房蕾, 林伟彬, 沈赟, 陈传峰. 螺烯及其衍生物在不对称催化中的应用[J]. 有机化学, 2018, 38(3): 541-554. |
[4] | 窦国兰, 史达清. 螺烯类化合物的合成研究进展[J]. 有机化学, 2011, 31(12): 1989-1996. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||