有机化学 ›› 2021, Vol. 41 ›› Issue (4): 1447-1465.DOI: 10.6023/cjoc202009033 上一篇 下一篇
所属专题: 热点论文虚拟合集
综述与进展
收稿日期:
2020-09-14
发布日期:
2020-11-12
通讯作者:
钟羽武
基金资助:
Jiang-Yang Shaoa, Yu-Wu Zhonga,b,*()
Received:
2020-09-14
Published:
2020-11-12
Contact:
Yu-Wu Zhong
About author:
Supported by:
文章分享
钙钛矿太阳能电池由于其高能量转换效率(最高报道认证效率为25.2%)、低成本和易于制造等特点, 成为下一代光伏技术的关注焦点. 虽然钙钛矿材料本身可以传导空穴, 但其效率比较低. 空穴传输材料的使用成为有效提取电荷和提高钙钛矿型太阳能电池效率的关键因素. 总结了近期报道的低成本、高性能有机小分子空穴传输材料(效率大于19%), 从螺环结构、噻吩衍生物以及其它结构进行介绍, 并从合成策略和化学修饰等角度评估结构-性能的构效关系及其对器件效率和稳定性的影响, 最后对有机小分子空穴传输材料的发展趋势进行了展望.
邵将洋, 钟羽武. 低成本、高性能钙钛矿电池有机小分子空穴传输材料[J]. 有机化学, 2021, 41(4): 1447-1465.
Jiang-Yang Shao, Yu-Wu Zhong. Low-Cost, High-Performance Organic Small Molecular Hole-Transporting Materials for Perovskite Solar Cells[J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1447-1465.
Device configuration | HOMO/ eV | Hole mobility/ (cm2?V–1?s–1) | Voc/V | Jsc/ (mA?cm–2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-TiO2/FAPbI3:xMDACl2/Spiro-OMeTAD (1)/Au | –5.22 | 5.31×10–5 | 1.15 | 26.1 | 0.79 | 23.7 | [ |
]FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/DM (2)/Au | –5.27 | NRa | 1.11 | 24.8 | 0.81 | 23.2 | [ |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/FDT (3)/Au | –5.16 | NRa | 1.15 | 22.7 | 0.76 | 20.2 | [ |
ITO/DFH(4)/MA0.9FA0.1PbI3–xClx/C60/BCP/Ag | –5.27 | 1×10–3 | 1.10 | 22.6 | 0.83 | 20.6b | [ |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/X60 (5)/Au | NRa | 1.9×10–4 | 1.14 | 24.2 | 0.71 | 19.84 | [ |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/X59 (6)/Au | –5.13 | 5.5×10–5 | 1.13 | 23.4 | 0.73 | 19.8 | [ |
FTO/c-TiO2/mp-TiO2/[HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3/X55 (7)/Au | –5.23 | 6.81×10–4 | 1.15 | 23.4 | 0.77 | 20.8 | [ |
FTO/c-TiO2/mp-TiO2/[HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3/X26 (8)/Au | –5.08 | 2.79×10–4 | 1.11 | 24.3 | 0.75 | 20.2 | [ |
FTO/c-TiO2/mp-TiO2/(FAPbI3)0.095(MAPbBr3)0.05/SFXDAnCBZ (9)/Au | –4.95 | 4.28×10–4 | 1.09 | 23.1 | 0.83 | 20.87 | [ |
FTO/c-TiO2/mp-TiO2/[HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3/G2 (10)/Au | –5.22 | 3.58×10–4 | 1.13 | 23.5 | 0.76 | 20.2 | [ |
FTO/c-TiO2/mp-TiO2/CsMAFA/HTM-1 (11)/Au | –5.01 | 4.5×10–4 | 1.10 | 24.7 | 0.77 | 21.0 | [ |
FTO/TiO2/MAPbI3/SCZF-5 (12)/MoO3/Ag | –5.17 | 4.69×10–4 | 1.11 | 24.4 | 0.74 | 20.1 | [ |
FTO/SnO2/CsFAMA/spiro-CN-OMeTAD (13)/Au | –5.16 | 1.04×10–4 | 1.16 | 22.0 | 0.78 | 19.9 | [ |
Device configuration | HOMO/ eV | Hole mobility/ (cm2?V–1?s–1) | Voc/V | Jsc/ (mA?cm–2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-TiO2/FAPbI3:xMDACl2/Spiro-OMeTAD (1)/Au | –5.22 | 5.31×10–5 | 1.15 | 26.1 | 0.79 | 23.7 | [ |
]FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/DM (2)/Au | –5.27 | NRa | 1.11 | 24.8 | 0.81 | 23.2 | [ |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/FDT (3)/Au | –5.16 | NRa | 1.15 | 22.7 | 0.76 | 20.2 | [ |
ITO/DFH(4)/MA0.9FA0.1PbI3–xClx/C60/BCP/Ag | –5.27 | 1×10–3 | 1.10 | 22.6 | 0.83 | 20.6b | [ |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/X60 (5)/Au | NRa | 1.9×10–4 | 1.14 | 24.2 | 0.71 | 19.84 | [ |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/X59 (6)/Au | –5.13 | 5.5×10–5 | 1.13 | 23.4 | 0.73 | 19.8 | [ |
FTO/c-TiO2/mp-TiO2/[HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3/X55 (7)/Au | –5.23 | 6.81×10–4 | 1.15 | 23.4 | 0.77 | 20.8 | [ |
FTO/c-TiO2/mp-TiO2/[HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3/X26 (8)/Au | –5.08 | 2.79×10–4 | 1.11 | 24.3 | 0.75 | 20.2 | [ |
FTO/c-TiO2/mp-TiO2/(FAPbI3)0.095(MAPbBr3)0.05/SFXDAnCBZ (9)/Au | –4.95 | 4.28×10–4 | 1.09 | 23.1 | 0.83 | 20.87 | [ |
FTO/c-TiO2/mp-TiO2/[HC(NH2)2]0.85(CH3NH3)0.15Pb(I0.85Br0.15)3/G2 (10)/Au | –5.22 | 3.58×10–4 | 1.13 | 23.5 | 0.76 | 20.2 | [ |
FTO/c-TiO2/mp-TiO2/CsMAFA/HTM-1 (11)/Au | –5.01 | 4.5×10–4 | 1.10 | 24.7 | 0.77 | 21.0 | [ |
FTO/TiO2/MAPbI3/SCZF-5 (12)/MoO3/Ag | –5.17 | 4.69×10–4 | 1.11 | 24.4 | 0.74 | 20.1 | [ |
FTO/SnO2/CsFAMA/spiro-CN-OMeTAD (13)/Au | –5.16 | 1.04×10–4 | 1.16 | 22.0 | 0.78 | 19.9 | [ |
Device configuration | HOMO/eV | Hole mobility/ (cm2?V–1?s–1) | Voc/V | Jsc/ (mA?cm–2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-TiO2/CsMAFA/Z3 (14)/Au | –5.24 | 2.4×10–4 | 1.12 | 25.1 | 0.75 | 20.84 | [21] |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/Z26 (15)/Au | –5.16 | 1.34×10–4 | 1.13 | 23.6 | 0.75 | 20.10 | [29] |
FTO/c-TiO2/MAPbI3/EDOT-Amide-TPA (16)/Au | –5.23 | 3.9×10–5 | 1.16 | 22.7 | 0.77 | 20.30 | [30] |
FTO/c-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/YK1 (17)/Au | –5.19 | 6.68×10–4 | 1.11 | 23.55 | 0.77 | 20.13 | [31] |
ITO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/TTE-2 (18)/Au | –5.30 | 6.18×10–4 | 1.11 | 23.26 | 0.77 | 20.04a | [32] |
ITO/SnO2/CsMAFA/OMe-TATPyr (19)/Au | –5.4 | 2.28×10–4 | 1.10 | 23.3 | 0.81 | 20.60 | [34] |
FTO/SnO2/C60/MA0.7FA0.3Pb(I0.925Br0.075)3/DTP-C6Th (20)/Au | –4.94 | 4.18×10–4 | 1.16 | 22.76 | 0.80 | 21.04a | [35] |
FTO/SnO2/C60/FA1–xMAxPb(I1–yBry)3/PMMA/DTPC8-ThDTPA (21)/Au | –4.85 | 6.5×10–5 | 1.14 | 23.02 | 0.74 | 19.42a | [36] |
ITO/SnO2/CsMAFA/M129 (22)/Au | –5.15 | 4.23×10–4 | 1.12 | 23.3 | 0.78 | 20.35 | [37] |
ITO/DBTMT (23)/MAPbI3/C60/BCP/Ag | –5.02 | Not reported | 1.12 | 22.7 | 0.83 | 21.12 | [38] |
ITO/SnO2/CsFAMA/BTTI-C6 (24)/Au | –5.25 | 2.19×10–4 | 1.10 | 23.41 | 0.75 | 19.69a | [39] |
ITO/BDT-POZ (25)/MAPbI3/PCBM/BCP/Ag | –4.83 | 2.1×10–4 | 1.04 | 22.56 | 0.82 | 19.16a | [40] |
ITO/SnO2/FA0.85MA0.15PbI3/SM2 (26)/MoO3/Ag | –5.42 | 4.51×10–4 | 1.07 | 24.5 | 0.79 | 20.56 | [41] |
FTO/c-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/KR321 (27)/Au | –5.24 | 2.6×10–4 | 1.13 | 21.7 | 0.78 | 19.03 | [42] |
Device configuration | HOMO/eV | Hole mobility/ (cm2?V–1?s–1) | Voc/V | Jsc/ (mA?cm–2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|
FTO/c-TiO2/mp-TiO2/CsMAFA/Z3 (14)/Au | –5.24 | 2.4×10–4 | 1.12 | 25.1 | 0.75 | 20.84 | [21] |
FTO/c-TiO2/mp-TiO2/FA1–xMAxPb(I1–yBry)3/Z26 (15)/Au | –5.16 | 1.34×10–4 | 1.13 | 23.6 | 0.75 | 20.10 | [29] |
FTO/c-TiO2/MAPbI3/EDOT-Amide-TPA (16)/Au | –5.23 | 3.9×10–5 | 1.16 | 22.7 | 0.77 | 20.30 | [30] |
FTO/c-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/YK1 (17)/Au | –5.19 | 6.68×10–4 | 1.11 | 23.55 | 0.77 | 20.13 | [31] |
ITO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/TTE-2 (18)/Au | –5.30 | 6.18×10–4 | 1.11 | 23.26 | 0.77 | 20.04a | [32] |
ITO/SnO2/CsMAFA/OMe-TATPyr (19)/Au | –5.4 | 2.28×10–4 | 1.10 | 23.3 | 0.81 | 20.60 | [34] |
FTO/SnO2/C60/MA0.7FA0.3Pb(I0.925Br0.075)3/DTP-C6Th (20)/Au | –4.94 | 4.18×10–4 | 1.16 | 22.76 | 0.80 | 21.04a | [35] |
FTO/SnO2/C60/FA1–xMAxPb(I1–yBry)3/PMMA/DTPC8-ThDTPA (21)/Au | –4.85 | 6.5×10–5 | 1.14 | 23.02 | 0.74 | 19.42a | [36] |
ITO/SnO2/CsMAFA/M129 (22)/Au | –5.15 | 4.23×10–4 | 1.12 | 23.3 | 0.78 | 20.35 | [37] |
ITO/DBTMT (23)/MAPbI3/C60/BCP/Ag | –5.02 | Not reported | 1.12 | 22.7 | 0.83 | 21.12 | [38] |
ITO/SnO2/CsFAMA/BTTI-C6 (24)/Au | –5.25 | 2.19×10–4 | 1.10 | 23.41 | 0.75 | 19.69a | [39] |
ITO/BDT-POZ (25)/MAPbI3/PCBM/BCP/Ag | –4.83 | 2.1×10–4 | 1.04 | 22.56 | 0.82 | 19.16a | [40] |
ITO/SnO2/FA0.85MA0.15PbI3/SM2 (26)/MoO3/Ag | –5.42 | 4.51×10–4 | 1.07 | 24.5 | 0.79 | 20.56 | [41] |
FTO/c-TiO2/mp-TiO2/(FAPbI3)0.85(MAPbBr3)0.15/KR321 (27)/Au | –5.24 | 2.6×10–4 | 1.13 | 21.7 | 0.78 | 19.03 | [42] |
HTM | HOMO/eV | Hole mobility/ (cm2?V–1?s–1) | Voc/V | Jsc/ (mA?cm–2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|
ITO/TPE-S (28)/FA0.9Cs0.1PbI3/PCBM/ZnO/Ag | –5.29 | 1.2×10–5 | 1.13 | 23.3 | 0.80 | 21.0b | 43 |
ITO/FMT (29)/MAPbI3/PCBM/Al | –4.89 | 2.28×10–6 | 1.07 | 22.52 | 0.79 | 19.06b | 44 |
FTO/c-TiO2/mp-TiO2/MAPbI3/CJ-03 (30)/Au | –5.18 | 6.47×10–5 | 1.11 | 22.89 | 0.79 | 20.06 | 45 |
ITO/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/Py-OMe (31)/Au | –5.40 | 4.4×10–3 | 1.11 | 22.82 | 0.76 | 19.28 | 46 |
ITO/SnO2/MAPbI3/TFAP (32)/Au | –5.27 | 4.5×10–3 | 1.11 | 22.63 | 0.74 | 19.74 | 47 |
FTO/c-TiO2/mp-TiO2/CsMAFA/KR374 (33)/Au | –5.06 | 1.2×10–6 | 1.09 | 23.15 | 0.76 | 19.26 | 48 |
FTO/c-TiO2/mp-TiO2/CsMAFA/DBC-OMeDPA (34)/Au | –5.26 | 8.8×10–4 | 1.13 | 24.8 | 0.79 | 22.0 | 50 |
FTO/TiO2/MAPbI3/pPh-2MODPACz (35)/Au | –5.22 | 9.05×10–5 | 1.09 | 23.22 | 0.78 | 19.74 | 51 |
FTO/c-TiO2/CH3NH3PbI3–xClx/JY8 (36)/Ag | –5.19 | 9.65×10–4 | 1.08 | 21.9 | 0.81 | 19.14 | 52 |
FTO/c-TiO2/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/PDO2 (37)/Au | –5.24 | 5.93×10–4 | 1.15 | 23.9 | 0.74 | 20.2 | 53 |
FTO/TiO2/MAPbI3/DCZ-OMeTAD (38)/MoO3/Ag | –5.27 | 6.5×10–4 | 1.06 | 25.14 | 0.81 | 21.66 | 54 |
ITO/C60/MAPbIxCl3–x/FBA3 (39)/MoO3/Ag | –5.07 | 2.12×10–4 | 1.09 | 22.12 | 0.80 | 19.27b | 55 |
FTO/SnO2/FA0.83Cs0.17Pb(I0.9Br0.1)3/V1091 (40)/Au | –5.17 | 1.3×10–5 | 1.11 | 22.5 | 0.81 | 20.2 | 56 |
FTO/SnO2/Cs0.17FA0.83Pb(I0.9Br0.1)3/TAT-tBuSty (41)/Au | NRa | NRa | 1.15 | 22.1 | 0.80 | 20.3 | 47 |
HTM | HOMO/eV | Hole mobility/ (cm2?V–1?s–1) | Voc/V | Jsc/ (mA?cm–2) | FF | PCE/% | Ref. |
---|---|---|---|---|---|---|---|
ITO/TPE-S (28)/FA0.9Cs0.1PbI3/PCBM/ZnO/Ag | –5.29 | 1.2×10–5 | 1.13 | 23.3 | 0.80 | 21.0b | 43 |
ITO/FMT (29)/MAPbI3/PCBM/Al | –4.89 | 2.28×10–6 | 1.07 | 22.52 | 0.79 | 19.06b | 44 |
FTO/c-TiO2/mp-TiO2/MAPbI3/CJ-03 (30)/Au | –5.18 | 6.47×10–5 | 1.11 | 22.89 | 0.79 | 20.06 | 45 |
ITO/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/Py-OMe (31)/Au | –5.40 | 4.4×10–3 | 1.11 | 22.82 | 0.76 | 19.28 | 46 |
ITO/SnO2/MAPbI3/TFAP (32)/Au | –5.27 | 4.5×10–3 | 1.11 | 22.63 | 0.74 | 19.74 | 47 |
FTO/c-TiO2/mp-TiO2/CsMAFA/KR374 (33)/Au | –5.06 | 1.2×10–6 | 1.09 | 23.15 | 0.76 | 19.26 | 48 |
FTO/c-TiO2/mp-TiO2/CsMAFA/DBC-OMeDPA (34)/Au | –5.26 | 8.8×10–4 | 1.13 | 24.8 | 0.79 | 22.0 | 50 |
FTO/TiO2/MAPbI3/pPh-2MODPACz (35)/Au | –5.22 | 9.05×10–5 | 1.09 | 23.22 | 0.78 | 19.74 | 51 |
FTO/c-TiO2/CH3NH3PbI3–xClx/JY8 (36)/Ag | –5.19 | 9.65×10–4 | 1.08 | 21.9 | 0.81 | 19.14 | 52 |
FTO/c-TiO2/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/PDO2 (37)/Au | –5.24 | 5.93×10–4 | 1.15 | 23.9 | 0.74 | 20.2 | 53 |
FTO/TiO2/MAPbI3/DCZ-OMeTAD (38)/MoO3/Ag | –5.27 | 6.5×10–4 | 1.06 | 25.14 | 0.81 | 21.66 | 54 |
ITO/C60/MAPbIxCl3–x/FBA3 (39)/MoO3/Ag | –5.07 | 2.12×10–4 | 1.09 | 22.12 | 0.80 | 19.27b | 55 |
FTO/SnO2/FA0.83Cs0.17Pb(I0.9Br0.1)3/V1091 (40)/Au | –5.17 | 1.3×10–5 | 1.11 | 22.5 | 0.81 | 20.2 | 56 |
FTO/SnO2/Cs0.17FA0.83Pb(I0.9Br0.1)3/TAT-tBuSty (41)/Au | NRa | NRa | 1.15 | 22.1 | 0.80 | 20.3 | 47 |
[1] |
(a) Jena, A.K.; Kulkarni, A.; Miyasaka, T. Chem. Rev. 2019, 119,3036.
pmid: 28945408 |
(b) Grätzel, M. Acc. Chem. Res. 2017, 50,487.
doi: 10.1021/acs.accounts.6b00492 pmid: 28945408 |
|
(c) Yu, D.; Hu, Y.; Shi, J.; Tang, H.; Zhang, W.; Meng, Q.; Han, H.; Ning, Z.; Tian, H. Sci. China: Chem. 2019, 62,684.
pmid: 28945408 |
|
[2] |
Saliba, M.; Correa-Baena, J.-P.; Grätzel, M.; Hagfeldt, A.; Abate, A. Angew. Chem., Int. Ed. 2018, 57,2554.
|
[3] |
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131,6050.
pmid: 19366264 |
[4] |
Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J.E.; Grätzel, M.; Park, N.-G. Sci. Rep. 2012, 2,1.
pmid: 22629481 |
[5] |
Kim, G.; Min, H.; Lee, K.S.; Lee, D.Y.; Yoon, M.; Seok, S.I. Science 2020, 370,108.
doi: 10.1126/science.abc4417 pmid: 33004518 |
[6] |
(a) Yang, S.; Fu, W.; Zhang, Z.; Chen, H.; Li, C.-Z. J. Mater. Chem. A 2017, 5,11462.
|
(b) Pham, H.D.; Yang, T.C.; Jain, S.M.; Wilson, G.J.; Sonar, P. Adv. Energy Mater. 2020, 10,1903326.
|
|
(c) Wang, Y.; Han, L. Sci. China: Chem. 2019, 62,822.
|
|
[7] |
(a) Pham, H.D.; Li, X.; Li, W.; Manzhos, S.; Kyaw, A.K. K.; Sonar, P. Energy Environ. Sci. 2019, 12,1177.
|
(b) Rajagopal, A.; Yao, K.; Jen, A.K.-Y. Adv. Mater. 2018,1800455.
|
|
[8] |
(a) Urieta-Mora, J.; Garcia-Benito, I.; Molina-Ontoria, A.; Martin, N. Chem. Soc. Rev. 2018, 47,8541.
pmid: 30283961 |
(b) Gangala, S.; Misra, R. J. Mater. Chem. A 2018, 6,18750.
pmid: 30283961 |
|
(c) Kim, G.-W.; Choi, H.; Kim, M.; Lee, J.; Son, S.Y.; Park, T. Adv. Energy Mater. 2020,1903403.
pmid: 30283961 |
|
[9] |
(a) Wang, T.; Ding, D.; Zheng, H.; Wang, X.; Wang, J.; Liu, H.; Shen, W. Sol. RRL 2019, 3,1900045.
pmid: 28971968 |
(b) Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Science 2017, 358,768.
pmid: 28971968 |
|
(c) Cao, J.; Wu, B.; Peng, J.; Feng, X.; Li, C.; Tang, Y. Sci. China: Chem. 2019, 62,363.
pmid: 28971968 |
|
[10] |
(a) Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Science 2015, 348,1234.
pmid: 30918371 |
(b) Jung, E.H.; Jeon, N.J.; Park, E.Y.; Moon, C.S.; Shin, T.J.; Yang, T.Y.; Noh, J.H.; Seo, J. Nature 2019, 567,511.
doi: 10.1038/s41586-019-1036-3 pmid: 30918371 |
|
[11] |
Min, H.; Kim, M.; Lee, S.-U.; Kim, H.; Kim, G.; Choi, K.; Lee, J.H.; Seok, S.I. Science 2019, 366,749.
doi: 10.1126/science.aay7044 pmid: 31699938 |
[12] |
Rakstys, K.; Saliba, M.; Gao, P.; Gratia, P.; Kamarauskas, E.; Paek, S.; Jankauskas, V.; Nazeeruddin, M.K. Angew. Chem., Int. Ed. 2016 , 55,7464.
|
[13] |
Jeon, N.J.; Na, H.; Jung, E.H.; Yang, T.-Y.; Lee, Y.G.; Kim, G.; Shin, H.-W.; Seok, S.I.; Lee, J.; Seo, J. Nat. Energy 2018, 3,682.
|
[14] |
Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; Angelis, F.D.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Grätzel, M.; Nazeeruddin, M.K. Nat. Energy 2016, 1,15017.
|
[15] |
Cao, Y.; Li, Y.; Morrissey, T.; Lam, B.; Patrick, B.O.; Dvorak, D.J.; Xia, Z.; Kelly, T.L.; Berlinguette, C.P. Energy Environ. Sci. 2019, 12,3502.
|
[16] |
Xu, B.; Bi, D.; Hua, Y.; Liu, P.; Cheng, M.; Grätzel, M.; Kloo, L.; Hagfeldt, A.; Sun, L. Energy Environ. Sci. 2016, 9,873.
|
[17] |
Bi, D.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A. Nano Energy 2016, 23,138.
|
[18] |
Xu, B.; Zhang, J.; Hua, Y.; Liu, P.; Wang, L.; Ruan, C.; Li, Y.; Boschloo, G.; Johansson, E.M. J.; Kloo, L.; Hagfeldt, A.; Jen, A.K.-Y.; Sun, L. Chem 2017, 2,676.
|
[19] |
Zhang, J.; Xu, B.; Yang, L.; Ruan, C.; Wang, L.; Liu, P.; Zhang, W.; Vlachopoulos, N.; Kloo, L.; Boschloo, G.; Sun, L.; Hagfeldt, A.; Johansson, E.M. J. Adv. Energy Mater. 2018, 8,1701209.
|
[20] |
Lee, D.Y.; Sivakumar, G.; Misra, M.R.; Seok, S.I. ACS Appl. Mater. Inter. 2020, 12,28246.
|
[21] |
Gao, K.; Xu, B.; Hong, C.; Shi, X.; Liu, H.; Li, X.; Xie, L.; Jen, A. K-Y. Adv. Energy Mater. 2018, 8,1800809.
|
[22] |
Akin, S.; Bauer, M.; Uchida, R.; Arora, N.; Jacopin, G.; Liu, Y.; Hertel, D.; Meerholz, K.; Mena-Osteritz, E.; Bäuerle, P.; Zakeeruddin, S.M.; Dar, M.I.; Grätzel, M. ACS Appl. Energy Mater. 2020, 3,7456.
|
[23] |
Park, S.J.; Jeon, S.; Lee, I.K.; Zhang, J.; Jeong, H.; Park, J.-Y.; Bang, J.; Ahn, T.K.; Shin, H.-W.; Kim, B.-G.; Park, H.J. J. Mater. Chem. A 2017, 5,13220.
|
[24] |
Zhu, X.-D.; Ma, X.-J.; Wang, Y.-K.; Li, Y.; Gao, C.-H.; Wang, Z.-K.; Jiang, Z.-Q.; Liao, L.-S. Adv. Funct. Mater. 2018,1807094.
|
[25] |
(a) Son, D.; Lee, J.; Choi, Y.; Jang, I.; Lee, S.; Yoo, P.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; Park, N. Nat. Energy 2016, 1,16081.
pmid: 25171692 |
(b) Li, X.; Zhang, W.; Wang, Y.-C.; Zhang, W.; Wang, H.-Q.; Fang, J. Nat. Commun. 2018, 9,3806.
pmid: 25171692 |
|
(c) Noel, N.K.; Abate, A.; Stranks, S.D.; Parrott, E.S.; Burlakov, V.M.; Goriely, A.; Snaith, H.J. ACS Nano 2014, 8,9815.
pmid: 25171692 |
|
[26] |
Xu, J.; Liang, L.; Mai, C.-L.; Zhang, Z.; Zhou, Q.; Xiong, Q.; Zhang, Z.; Deng, L.; Gao, P. Nanoscale 2020, 12,13157.
doi: 10.1039/d0nr01961e pmid: 32584356 |
[27] |
Gao, K.; Zhu, Z.; Xu, B.; Jo, S.B.; Kan, Y.; Peng, X.; Jen, A.K.-Y. Adv. Mater. 2017, 29,1703980.
|
[28] |
Fang, L.; Zheng, A.; Ren, M.; Xie, X.; Wang, P. ACS Appl. Mater. Interfaces 2019, 11,39001.
|
[29] |
Zhang, F.; Wang, Z.; Zhu, H.; Pellet, N.; Luo, J.; Yi, C.; Liu, X.; Liu, H.; Wang, S.; Li, X.; Xiao, Y.; Zakeeruddin, S.M.; Bi, D.; Gratzel, M. Nano Energy 2017, 41,469.
|
[30] |
Petrus, M.L.; Schutt, K.; Sirtl, M.T.; Hutter, E.M.; Closs, A.C.; Ball, J.M.; Bijleveld, J.C.; Petrozza, A.; Bein, T.; Dingemans, T.J.; Savenije, T.J.; Snaith, H.; Docampo, P. Adv. Energy Mater. 2018, 8,1801605.
|
[31] |
Hua, Y.; Chen, S.; Zhang, D.; Xu, P.; Sun, A.; Ou, Y.; Wu, T.; Sun, H.; Cui, B.; Zhu, X. J. Mater. Chem. A 2019, 7,10200.
|
[32] |
Shen, C.; Wu, Y.; Zhang, H.; Li, E.; Zhang, W.; Xu, X.; Wu, W.; Tian, H.; Zhu, W.-H. Angew. Chem., Int. Ed. 2019, 58,3784.
|
[33] |
Jeon, N.J.; Lee, J.; Noh, J.H.; Nazeeruddin, M.K.; Gratzel, M.; Seok, S.I. J. Am. Chem. Soc. 2013, 135,19087.
doi: 10.1021/ja410659k pmid: 24313292 |
[34] |
(a) Ge, Q.-Q.; Shao, J.-Y.; Ding, J.; Deng, L.-Y.; Zhou, W.-K.; Chen, Y.-X.; Ma, J.-Y.; Wan, L.-J.; Yao, J.; Hu, J.-S.; Zhong, Y.-W. Angew. Chem., Int. Ed. 2018, 57,10959.
|
(b) Wei, Q.; Ning, Z. Sci. China: Chem. 2019, 62,5.
|
|
[35] |
Yin, X.; Zhou, J.; Song, Z.; Dong, Z.; Bao, Q.; Shrestha, N.; Bista, S.S.; Ellingson, R.J.; Yan, Y.; Tang, W. Adv. Funct. Mater. 2019,1904300.
|
[36] |
Dong, Z.; Yin, X.; Ali, A.; Zhou, J.; Bista, S.S.; Chen, C.; Yan, Y.; Tang, W. J. Mater. Chem. C 2019, 7,9455.
|
[37] |
Wang, J.; Zhang, H.; Wu, B.; Wang, Z.; Sun, Z.; Xue, S.; Wu, Y.; Hagfeldt, A.; Liang, M. Angew. Chem., Int. Ed. 2019, 58,15721.
|
[38] |
Zhang, J.; Sun, Q.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Jia, X.; Zhu, Y.; Zhang, S.; Yuan, N.; Ding, J.; Li, Y. Sol. RRL 2020, 4,1900421.
|
[39] |
Tu, B.; Wang, Y.; Chen, W.; Liu, B.; Feng, X.; Zhu, Y.; Yang, K.; Zhang, Z.; Shi, Y.; Guo, X.; Li, H.-F.; Tang, Z.; Djurišić, A.B.; He, Z. ACS Appl. Mater. Interfaces 2019, 11,48556.
pmid: 31786921 |
[40] |
Chen, Y.; Xu, X.; Cai, N.; Qian, S.; Luo, R.; Huo, Y.; Tsang, S.-W. Adv. Energy Mater. 2019, 9,1901268.
|
[41] |
Oh, S.; Khan, N.; Jin, S.-M.; Tran, H.; Yoon, N.; Song, C.E.; Lee, H.K.; Shin, W.S.; Lee, J.-C.; Moon, S.-J.; Lee, E.; Lee, S.K. Nano Energy 2020, 72,104708.
|
[42] |
Rakstys, K.; Paek, S.; Gao, P.; Gratia, P.; Marszalek, T.; Grancini, G.; Cho, K.T.; Genevicius, K.; Jankauskas, V.; Pisula, W.; Nazeeruddin, M.K. J. Mater. Chem. A 2017, 5,7811.
|
[43] |
Jiang, K.; Wang, J.; Wu, F.; Xue, Q.; Yao, Q.; Zhang, J.; Chen, Y.; Zhang, G.; Zhu, Z.; Yan, H.; Zhu, L.; Yip, H.-L. Adv. Mater. 2020,1908011.
|
[44] |
Zhang, J.; Sun, Q.; Chen, Q.; Wang, Y.; Zhou, Y.; Song, B.; Yuan, N.; Ding, J.; Li, Y. Adv. Funct. Mater. 2019, 29,1900484.
|
[45] |
Chen, J.; Xia, J.; Gao, W.-J.; Yu, H.-J.; Zhong, J.-X.; Jia, C.; Qin, Y.-S.; She, Z.; Kuang, D.-B.; Shao, G. ACS Appl. Mater. Interfaces 2020, 12,21088.
doi: 10.1021/acsami.0c02751 pmid: 32252526 |
[46] |
Cui, B.-B.; Zhu, C.; Yang, S.; Han, Y.; Yang, N.; Zhang, L.; Wang, Y.; Jia, Y.; Zhao, L.; Chen, Q. ACS Omega 2018, 3,10791.
|
[47] |
Shao, J.-Y.; Yang, N.; Guo, W.; Cui, B.-B.; Chen, Q.; Zhong, Y.-W. Chem. Commun. 2019, 55,13406.
|
[48] |
Rakstys, K.; Paek, S.; Grancini, G.; Gao, P.; Jankauskas, V.; Asiri, A.M.; Nazeeruddin, M.K. ChemSusChem 2017, 10,3825.
doi: 10.1002/cssc.201700974 pmid: 28650097 |
[49] |
Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112,1463.
pmid: 22017405 |
[50] |
Ren, M.; Wang, J.; Xie, X.; Zhang, J.; Wang, P. ACS Energy Lett. 2019, 4,2683.
|
[51] |
Yu, W.; Yang, Q.; Zhang, J.; Tu, D.; Wang, X.; Liu, X.; Li, G.; Guo, X.; Li, C. ACS Appl. Mater. Interfaces 2019, 11,30065.
doi: 10.1021/acsami.9b06933 pmid: 31347829 |
[52] |
Ji, Y.; He, B.; Lu, H.; Xu, J.; Wang, R.; Jin, Y.; Zhong, C.; Shan, Y.; Wu, F.; Zhu, L. ChemSusChem 2019, 12,1374.
pmid: 30666810 |
[53] |
Ding, X.; Chen, C.; Sun, L.; Li, H.; Chen, H.; Su, J.; Li, H.; Li, H.; Xu, L.; Cheng, M. J. Mater. Chem. A 2019, 7,9510.
|
[54] |
Ma, X.-J.; Zhu, X.-D.; Wang, K.-L.; Igbari, F.; Yuan, Y.; Zhang, Y.; Gao, C.-H.; Jiang, Z.-Q.; Wang, Z.-K.; Liao, L.-S. Nano Energy 2019, 63,1 03865.
|
[55] |
Sun, X.; Wu, F.; Zhong, C.; Zhu, L.; Li, Z. Chem. Sci. 2019, 10,6899.
pmid: 31402973 |
[56] |
Vaitukaityte, D.; Wang, Z.; Malinauskas, T.; Magomedov, A.; Bubniene, G.; Jankauskas, V.; Getautis, V.; Snaith, H.J. Adv. Mater. 2018, 30,1803735.
|
[57] |
Connell, A.; Wang, Z.; Lin, Y.-H.; Greenwood, P.C.; Wiles, A.A.; Jones, E.W.; Furnell, L.; Anthony, R.; Kershaw, C.P.; Cooke, G.; Snaith, H.J.; Holliman, P.J. J. Mater. Chem. C 2019, 7,5235.
|
[1] | 吴赛, 陶吴晞, 王果, 赵斌, 陈华杰. 含靛红并苊醌二甲酰亚胺端基的A-D-A型小分子受体材料的合成及其光电性质研究[J]. 有机化学, 2021, 41(5): 2019-2028. |
[2] | 李英俊, 赵楠, 李丽娜, 李春燕, 孙淑琴, 周晓霞. 结构不对称三芳胺类化合物的合成、表征及性质研究[J]. 有机化学, 2012, 32(05): 949-952. |
[3] | 刘涛平, 孙杰, 李瑞, 陶晓春. 三芳胺合成的研究进展[J]. 有机化学, 2011, 31(11): 1799-1810. |
[4] | 薛金强,冯亚青,汪磊,吴玲卉. 苯乙烯相连的卟啉-三芳胺共轭体的合成及表征[J]. 有机化学, 2008, 28(04): 732-735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||