有机化学 ›› 2022, Vol. 42 ›› Issue (8): 2376-2389.DOI: 10.6023/cjoc202202003 上一篇 下一篇
综述与进展
收稿日期:
2022-02-05
修回日期:
2022-04-20
发布日期:
2022-05-06
通讯作者:
黄汉民
基金资助:
Received:
2022-02-05
Revised:
2022-04-20
Published:
2022-05-06
Contact:
Hanmin Huang
Supported by:
文章分享
复分解反应作为一种重要的化学键重组反应, 被认为是构建常规路径无法获得的复杂分子的重要方法, 极大地推动了合成化学的发展. 然而, 目前已知的复分解反应大多局限于多重键的重组反应, 碳-杂原子键的复分解反应由于其键能比较高, 不容易被切断, 面临着诸多机遇和挑战. 根据成键类型进行划分, 总结了近十年来过渡金属及氢键催化的C—Si、C—P、C—S、C—I、C—O和C—N键复分解反应的研究进展.
于帮魁, 黄汉民. 碳-杂原子键复分解反应的研究进展[J]. 有机化学, 2022, 42(8): 2376-2389.
Bangkui Yu, Hanmin Huang. Recent Advances in C—X Bond Metathesis Reactions[J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2376-2389.
[1] |
(a) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
doi: 10.1021/cr0200872 pmid: 29714397 |
(b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4490.
doi: 10.1002/anie.200500369 pmid: 29714397 |
|
(c) Higman, C. S.; Lummiss, J. A. M.; Fogg, D. E. Angew. Chem. Int. Ed. 2016, 55, 3552.
doi: 10.1002/anie.201506846 pmid: 29714397 |
|
(d) Grubbs, R. H.; Wenzel, A. G.; O'Leary, D. J.; Koshravi, E. Handbook of Metathesis, 2nd ed., Wiley, Weinheim, 2015, Vol. 1-3.
pmid: 29714397 |
|
(e) Ogba, M. O.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Chem. Soc. Rev. 2018, 47, 4510.
doi: 10.1039/c8cs00027a pmid: 29714397 |
|
[2] |
(a) Fürstner, A. In Handbook of Metathesis, Vol. 4, Ed.: Grubbs, R., Wiley-VCH, Weinheim, Germany, 2003, p. 432.
pmid: 30335106 |
(b) Zhang, W.; Moore, J. S. Adv. Synth. Catal. 2007, 349, 93.
doi: 10.1002/adsc.200600476 pmid: 30335106 |
|
(c) Yang, X.-X.; Zhang, Y.; Shao, Z.-Y. Chin. J. Org. Chem. 2010, 30, 968. (in Chinese)
pmid: 30335106 |
|
(杨晓霞, 张勇, 邵志宇, 有机化学, 2010, 30, 968.)
pmid: 30335106 |
|
(d) Ciaccia, M.; Di Stefano, S. Org. Biomol. Chem. 2015, 13, 646.
doi: 10.1039/c4ob02110j pmid: 30335106 |
|
(e) Ma, L.; Li, W.; Xi, H.; Bai, X.; Ma, E.; Yan, X.; Li, Z. Angew. Chem. Int. Ed. 2016, 55, 10410.
doi: 10.1002/anie.201604349 pmid: 30335106 |
|
(f) Becker, M. R.; Watson, R. B.; Schindler, C. S. Chem. Soc. Rev. 2018, 47, 7867.
doi: 10.1039/c8cs00391b pmid: 30335106 |
|
[3] |
(a) Cárdenas, D. J. Angew. Chem. Int. Ed. 1999, 38, 3018.
doi: 10.1002/(SICI)1521-3773(19991018)38:20<3018::AID-ANIE3018>3.0.CO;2-F pmid: 11749317 |
(b) Luh, T.-Y.; Leung, M.-K.; Wong, K.-T. Chem. Rev. 2000, 100, 3187.
pmid: 11749317 |
|
(c) Cárdenas, D. J. Angew. Chem. Int. Ed. 2003, 42, 384.
doi: 10.1002/anie.200390123 pmid: 11749317 |
|
[4] |
(a) Cecchetti, V.; Calderone, V.; Tabarrini, O.; Sabatini, S.; Filipponi, E.; Testai, L.; Spogli, R.; Martinotti, E.; Fravolini, A. J. Med. Chem. 2003, 46, 3670.
pmid: 12904071 |
(b) Katritzky, A. R. Chem. Rev. 2004, 104, 2125.
doi: 10.1021/cr0406413 pmid: 12904071 |
|
(c) Saracoglu, N. Top. Heterocycl. Chem. 2007, 11, 145.
pmid: 12904071 |
|
(d) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Chem. Educ. 2013, 90, 1403.
doi: 10.1021/ed4002317 pmid: 12904071 |
|
(e) Nosova, E. V.; Lipunova, G. N.; Charushin, V. N.; Chupakhin, O. N. J. Fluorine Chem. 2018, 212, 51.
doi: 10.1016/j.jfluchem.2018.05.012 pmid: 12904071 |
|
(f) Meanwell, N. A.; Lolli, M. L. In Advances in Heterocyclic Chemistry, Vol. 134, 2021, pp. 2-320.
pmid: 12904071 |
|
[5] |
(a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
doi: 10.1021/cr100347k pmid: 25157613 |
(b) Wauters, I.; Debrouwer, W.; Stevens, C. V. Beilstein J. Org. Chem. 2014, 10, 1064.
doi: 10.3762/bjoc.10.106 pmid: 25157613 |
|
(c) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081.
doi: 10.1039/c4cs00206g pmid: 25157613 |
|
(d) Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Chem. Rev. 2015, 115, 12045.
doi: 10.1021/acs.chemrev.5b00386 pmid: 25157613 |
|
(e) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Andy Hor, T. S.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
doi: 10.1039/C4CS00239C pmid: 25157613 |
|
(f) Wang, Q.; Su, Y.; Li, L.; Huang, H. Chem. Soc. Rev. 2016, 45, 1257.
doi: 10.1039/C5CS00534E pmid: 25157613 |
|
(g) Komiyama, T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631.
doi: 10.1021/acscatal.6b02374 pmid: 25157613 |
|
(h) Cai, B.-G.; Xuan, J.; Xiao, W.-J. Sci. Bull. 2019, 64, 337.
doi: 10.1016/j.scib.2019.02.002 pmid: 25157613 |
|
(i) Xiao, P.; Gao, L.; Song, Z. Chem. Eur. J. 2019, 25, 2407.
doi: 10.1002/chem.201803803 pmid: 25157613 |
|
(j) Chen, L.; Liu, X.-Y.; Zou, Y.-X. Adv. Synth. Catal. 2020, 362, 1724.
doi: 10.1002/adsc.201901540 pmid: 25157613 |
|
(k) Lou, J.; Wang, Q.; Wu, P.; Wang, H.; Zhou, Y.-G.; Yu, Z. Chem. Soc. Rev. 2020, 49, 4307.
doi: 10.1039/C9CS00837C pmid: 25157613 |
|
[6] |
(a) Hassner, A. In Topics in Heterocyclic Chemistry, Vol 12. Eds.: Hassner, A. Springer, Berlin, Heidelberg, 2008.
pmid: 28585948 |
(b) Wolfe, J. P. In Topics in Heterocyclic Chemistry, Vol 32. Eds.: Wolfe, J. P. Springer, Berlin, Heidelberg, 2013.
pmid: 28585948 |
|
(c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Rev. 2015, 115, 5301.
doi: 10.1021/cr5006974 pmid: 28585948 |
|
(d) Saito, A.; Tateishi, K. Heterocycles 2016, 92, 607.
doi: 10.3987/REV-15-836 pmid: 28585948 |
|
(e) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
doi: 10.1039/c6cs00912c pmid: 28585948 |
|
[7] |
(a) Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000.
|
(b) Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845.
doi: 10.1039/C1CS15181A |
|
(c) Komiyama, T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631.
doi: 10.1021/acscatal.6b02374 |
|
[8] |
(a) Curtis, M. D.; Epstein, P. S. Adv. Organomet. Chem. 1981, 19, 213.
doi: 10.1016/S0022-328X(00)87774-8 |
(b) Radu, N. S.; Hollander, F. J.; Tilley, T. D.; Rheingold, A. L. Chem. Commun. 1996, 21, 2459.
|
|
(c) Castillo, I.; Tilley, T. D. Organometallics 2001, 20, 5598.
doi: 10.1021/om010709u |
|
(d) Park, S.; Kim, B. G.; Göttker-Schnetmann, I.; Brookhart, M. ACS Catal. 2012, 2, 307.
doi: 10.1021/cs200629t |
|
(e) Feigl, A.; Chiorescu, I.; Deller, K.; Heidsieck, S. U. H.; Buchner, M. R.; Karttunen, V.; Bockholt, A.; Genest, A.; Rösch, N.; Rieger, B. Chem.-Eur. J. 2013, 19, 12526.
doi: 10.1002/chem.201203139 |
|
[9] |
Ma, Y.; Zhang, L.; Luo, Y.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2017, 139, 12434.
doi: 10.1021/jacs.7b08053 |
[10] |
Rao, B.; Wang, L.; Kinjo, R. Angew. Chem. Int. Ed. 2019, 58, 231.
doi: 10.1002/anie.201811574 |
[11] |
Liu, X.; Xiang, L.; Louyriac, E.; Maron, L.; Leng, X.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 138.
doi: 10.1021/jacs.8b12138 |
[12] |
(a) Guo, C.; Li, M.; Chen, J.; Luo, Y. Chem. Commun. 2020, 56, 117.
doi: 10.1039/C9CC07493G |
(b) Liu, Z.; Shi, X.; Cheng, J. Dalton Trans. 2020, 49, 8340.
doi: 10.1039/D0DT01158D |
|
(c) Li, T.; McCabe, K. N.; Maron, L.; Leng, X.; Chen, Y. ACS Catal. 2021, 11, 6348.
doi: 10.1021/acscatal.1c00463 |
|
[13] |
(a) Hartwig, J. F. Organotransition Metal Catalysis, Palgrave Macmillan, 2009, pp. 668-676.
pmid: 17091932 |
(b) Bertrand, G. Chem. Rev. 1994, 94, 1161.
doi: 10.1021/cr00029a600 pmid: 17091932 |
|
(c) Baumgartner, T.; Réau, R. Chem. Rev. 2006, 106, 4681.
pmid: 17091932 |
|
(d) Stolar, M.; Baumgartner, T. Chem. Asian J. 2014, 9, 1212.
doi: 10.1002/asia.201301670 pmid: 17091932 |
|
[14] |
(a) Abatjoglou, A. G.; Bryant, D. R. Organometallics 1984, 3, 932.
doi: 10.1021/om00084a019 |
(b) Goodson, F. E.; Wallaw, T. I.; Novak, B. M. J. Am. Chem. Soc. 1997, 119, 12441.
doi: 10.1021/ja972554g |
|
[15] |
(a) Ziegler Jr., C. B.; Heck, R. F. J. Org. Chem. 1978, 43, 2941.
doi: 10.1021/jo00409a001 pmid: 11500901 |
(b) de la Torre, G.; Gouloumis, A.; Vázquez, P.; Torres, T. Angew. Chem. Int. Ed. 2001, 40, 2895.
pmid: 11500901 |
|
(c) Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem. Int. Ed. 2005, 44, 6166.
doi: 10.1002/anie.200501582 pmid: 11500901 |
|
[16] |
Lian, Z.; Bhawal, B. N.; Yu, P.; Morandi, B. Science 2017, 356, 1059.
doi: 10.1126/science.aam9041 |
[17] |
Baba, K.; Masuya, Y.; Chatani, N.; Tobisu, M. Chem. Lett. 2017, 46, 1296.
doi: 10.1246/cl.170581 |
[18] |
Ho Lee, Y.; Morandi, B. Nat. Chem. 2018, 10, 1016.
doi: 10.1038/s41557-018-0078-8 |
[19] |
Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
doi: 10.1038/nature13274 |
[20] |
Fujimoto, H.; Kusano, M.; Kodama, T.; Tobisu, M. Org. Lett. 2019, 21, 4177.
doi: 10.1021/acs.orglett.9b01355 pmid: 31117707 |
[21] |
(a) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832.
doi: 10.1021/jm401375q |
(b) Boyd, D. A. Angew. Chem. Int. Ed. 2016, 55, 15486.
doi: 10.1002/anie.201604615 |
|
(c) Rahate, A. S.; Nemade, K. R.; Waghuley, S. A. Rev. Chem. Eng. 2013, 29, 471.
|
|
[22] |
Sugahara, T.; Murakami, K.; Yorimitsu, H.; Osuka, A. Angew. Chem. Int. Ed. 2014, 53, 9329.
doi: 10.1002/anie.201404355 |
[23] |
Delcaillau, T.; Bismuto, A.; Lian, Z.; Morandi, B. Angew. Chem. Int. Ed. 2020, 59, 2110.
doi: 10.1002/anie.201910436 pmid: 31829493 |
[24] |
Liu, C.; Chen, D.; Fu, Y.; Wang, F.; Luo, J.; Huang, S. Org. Lett. 2020, 22, 5701.
doi: 10.1021/acs.orglett.0c02089 |
[25] |
Delcaillau, T.; Boehm, P.; Morandi, B. J. Am. Chem. Soc. 2021, 143, 3723.
doi: 10.1021/jacs.1c00529 pmid: 33655746 |
[26] |
Isshiki, R.; Kurosawa, M. B.; Muto, K.; Yamaguchi, J. J. Am. Chem. Soc. 2021, 143, 10333.
doi: 10.1021/jacs.1c04215 |
[27] |
Kasahara, T.; Jang, Y. J.; Racicot, L.; Panagopoulos, D.; Liang, S. H.; Ciufolini, M. A. Angew. Chem. Int. Ed. 2014, 53, 9637.
doi: 10.1002/anie.201405594 |
[28] |
Chung, R.; Vo, A.; Hein, J. E. ACS Catal. 2017, 7, 2505.
doi: 10.1021/acscatal.6b03515 |
[29] |
De La Higuera Macias, M.; Arndtsen, B. A. J. Am. Chem. Soc. 2018, 140, 10140.
doi: 10.1021/jacs.8b06605 |
[30] |
(a) Otera, J. Chem. Rev. 1993, 93, 1449.
doi: 10.1021/cr00020a004 |
(b) “Esters, Organic”: Riemenschneider, W.; Bolt, H. Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release, Wiley- VCH, Weinheim, 2005.
|
|
(c) Yu, C.; Huang, H.; Li, X.; Zhang, Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 6956.
doi: 10.1021/jacs.6b03609 |
|
(d) Lam, Y.-P.; Wang, X.; Tan, F.; Ng, W.-H.; Steve Tse, Y.-L.; Yeung, Y.-Y. ACS Catal. 2019, 9, 8083.
doi: 10.1021/acscatal.9b01959 |
|
[31] |
Biberger, T.; Makai, S.; Lian, Z.; Morandi, B. Angew. Chem. Int. Ed. 2018, 57, 6940.
doi: 10.1002/anie.201802563 pmid: 29603569 |
[32] |
Wang, H.; Zhao, Y.; Zhang, F.; Wu, Y.; Li, R.; Xiang, J.; Wang, Z.; Han, B.; Liu, Z. Angew. Chem. Int. Ed. 2020, 59, 11850.
doi: 10.1002/anie.202004002 |
[33] |
Vidal, J. L.; Wyper, O. M.; MacQuarrie, S. L.; Kerton, F. M. Eur. J. Org. Chem. 2021, 6052.
|
[34] |
(a) Davidsen, S. K.; May, P. D.; Summers, J. B. J. Org. Chem. 1991, 56, 5482.
doi: 10.1021/jo00018a059 |
(b) Bon, E.; Bigg, D. C. H.; Bertrand, G. J. Org. Chem. 1994, 59, 4035.
doi: 10.1021/jo00094a004 |
|
(c) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science, Wiley-VCH, Weinheim, 2002.
|
|
(d) Mucsi, Z.; Chass, G. A.; Csizmadia, I. G. J. Phys. Chem. B 2008, 112, 7885.
doi: 10.1021/jp8023292 |
|
[35] |
(a) Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 3422.
pmid: 19621957 |
(b) Bell, C. M.; Kissounko, D. A.; Gellman, S. H.; Stahl, S. S. Angew. Chem. Int. Ed. 2007, 46, 761.
pmid: 19621957 |
|
(c) Stephenson, N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 10003.
doi: 10.1021/ja8094262 pmid: 19621957 |
|
[36] |
(a) Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y.-F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.
doi: 10.1038/nature14615 pmid: 27199089 |
(b) Baker, E. L.; Yamano, M. M.; Zhou, Y.; Anthony, S. M.; Garg, N. K. Nat. Commun. 2016, 7, 11554.
doi: 10.1038/ncomms11554 pmid: 27199089 |
|
[37] |
Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
doi: 10.1021/jm4017625 |
[38] |
Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
doi: 10.1021/jm901241e pmid: 19827778 |
[39] |
Murahashi, S.-I.; Hirano, T.; Yano, T. J. Am. Chem. Soc. 1978, 100, 348.
doi: 10.1021/ja00469a093 |
[40] |
(a) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
doi: 10.1021/cr900202j pmid: 19938813 |
(b) Guillena, G.; Ramln, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611.
doi: 10.1021/cr9002159 pmid: 19938813 |
|
(c) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
doi: 10.1021/acs.chemrev.7b00340 pmid: 19938813 |
|
[41] |
(a) Khai, B.-T.; Concilio, C.; Porzi, G. J. Organomet. Chem. 1981, 208, 249.
doi: 10.1016/S0022-328X(00)82680-7 |
(b) Khai, B.-T.; Concilio, C.; Porzi, G. J. Org. Chem. 1981, 46, 1759.
doi: 10.1021/jo00321a056 |
|
[42] |
(a) Hollmann, D.; B-hn, S.; Tillack, A.; Beller, M. Angew. Chem. Int. Ed. 2007, 46, 8291.
pmid: 17890660 |
(b) Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Williams, J. M. J. Angew. Chem. Int. Ed. 2009, 48, 7375.
doi: 10.1002/anie.200904028 pmid: 17890660 |
|
(c) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4, 3910.
doi: 10.1021/cs5009909 pmid: 17890660 |
|
[43] |
Yin, Z.; Zeng, H.; Wu, J.; Zheng, S.; Zhang, G. ACS Catal. 2016, 6, 6546.
doi: 10.1021/acscatal.6b02218 |
[44] |
(a) Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
doi: 10.1021/ja310848x |
(b) Xie, Y.; Hu, J.; Xie, P.; Qian, B.; Huang, H. J. Am. Chem. Soc. 2013, 135, 18327.
doi: 10.1021/ja410611b |
|
(c) Hu, J.; Xie, Y.; Huang, H. Angew. Chem. Int. Ed. 2014, 53, 7272.
doi: 10.1002/anie.201403774 |
|
(d) Qin, G.; Li, L.; Li, J.; Huang, H. J. Am. Chem. Soc. 2015, 137, 12490.
doi: 10.1021/jacs.5b08476 |
|
(e) Liu, Y.; Xie, Y.; Wang, H.; Huang, H. J. Am. Chem. Soc. 2016, 138, 4314.
doi: 10.1021/jacs.6b00976 |
|
(f) Qi, X.; Liu, S.; Lan, Y. Organometallic 2016, 35, 1582.
doi: 10.1021/acs.organomet.6b00234 |
|
[45] |
Yu, B.; Zou, S.; Liu, H.; Huang, H. J. Am. Chem. Soc. 2020, 142, 18341.
doi: 10.1021/jacs.0c10615 |
[1] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[2] | 陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337. |
[3] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[4] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[5] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[6] | 郝二军, 丁笑波, 王珂新, 周红昊, 杨启亮, 石磊. 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023, 43(12): 4057-4074. |
[7] | 高秋珊, 李蒙, 伍婉卿. 过渡金属催化的异腈插入反应研究进展[J]. 有机化学, 2022, 42(9): 2659-2681. |
[8] | 乔辉杰, 杨利婷, 陈雅, 王嘉琳, 孙武轩, 董昊博, 王云威. 温和条件下高效合成咪唑并杂环-肼类衍生物的三组分串联反应[J]. 有机化学, 2022, 42(4): 1188-1197. |
[9] | 张苗苗, 韩波, 马豪杰, 赵亮, 王记江, 张玉琦. 以氢硅烷为氢源: 铱催化N-杂环化合物的氢化[J]. 有机化学, 2022, 42(4): 1170-1178. |
[10] | 洪科苗, 黄晶晶, 姚铭瀚, 徐新芳. 氮宾/炔烃复分解串联反应研究进展[J]. 有机化学, 2022, 42(2): 344-352. |
[11] | 李红霞, 陈棚, 伍智林, 陆雨函, 彭俊梅, 陈锦杨, 何卫民. 电化学促进的五元芳香杂环与硫氰酸铵氧化交叉脱氢偶联反应[J]. 有机化学, 2022, 42(10): 3398-3404. |
[12] | 刘金妮, 谢益碧, 阳青青, 黄年玉, 王龙. 基于原位捕获胺的Ugi四组分反应及其后修饰串联环化反应:“一锅法”合成六元、七元杂环化合物[J]. 有机化学, 2021, 41(6): 2374-2383. |
[13] | 杨凯, 刘美娟, 张毓娜, 占佳琦, 邓璐璇, 郑雪洁, 周永军, 汪朝阳. 基于2-卤苯甲酰胺合成苯并杂环化合物的研究进展[J]. 有机化学, 2021, 41(6): 2175-2187. |
[14] | 贾丰成, 罗娜, 徐程, 吴安心. 靛红在苯并氮杂环类化合物的合成应用进展[J]. 有机化学, 2021, 41(4): 1527-1542. |
[15] | 许颖, 李晨, 孟建萍, 黄玉玲, 付纪源, 刘冰, 刘颖杰, 陈宁. 有机硒参与的硒环化反应研究进展[J]. 有机化学, 2021, 41(3): 1012-1030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||