有机化学 ›› 2022, Vol. 42 ›› Issue (9): 2898-2905.DOI: 10.6023/cjoc202204024 上一篇 下一篇
研究论文
李冬英, 邱闪光, 陈昱学, 赵艳梅, 魏云龙, 吴禄勇*(), 陈文豪
收稿日期:
2022-04-10
修回日期:
2022-05-18
发布日期:
2022-06-08
通讯作者:
吴禄勇
基金资助:
Dongying Li, Shanguang Qiu, Yuxue Chen, Yanmei Zhao, Yunlong Wei, Luyong Wu(), Wenhao Chen
Received:
2022-04-10
Revised:
2022-05-18
Published:
2022-06-08
Contact:
Luyong Wu
Supported by:
文章分享
探索了一种碱催化下单-1-取代的1,2,3-三唑的选择性氢-氘交换反应. 以t-BuOK, t-BuONa或Cs2CO3作为碱, 单-1-取代的1,2,3-三唑在二甲基亚砜(DMSO)-d6溶液中可以选择性地实现C5位置的氘代. 在相应的反应条件下, 4,5-双氘代1,2,3-三唑在相应的反应条件下进行氘-氢交换, 可以选择性地实现C5位置的去氘代过程, 从而实现C4氘代的1,2,3-三唑化合物的合成. 同时, 三唑环辅助下的苯环上的氢-氘交换过程也被观察到.
李冬英, 邱闪光, 陈昱学, 赵艳梅, 魏云龙, 吴禄勇, 陈文豪. 碱催化下单-1-取代-1,2,3-三唑选择性氢-氘交换反应研究[J]. 有机化学, 2022, 42(9): 2898-2905.
Dongying Li, Shanguang Qiu, Yuxue Chen, Yanmei Zhao, Yunlong Wei, Luyong Wu, Wenhao Chen. Research for the Reaction of Base-Catalyzed Selective Hydrogen- Deuterium Exchange in Mono-1-substituted 1,2,3-Triazoles[J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2898-2905.
Entry | Solvent | Base (x equiv.) | Temperature | Time/h | Yieldb/% | D content c/% |
---|---|---|---|---|---|---|
1 | DMSO-d6 | Cs2CO3 (0.2 equiv.) | 80 ℃ | 6 | 98 | 98 |
2 | DMSO-d6 | K2CO3 (0.2 equiv.) | 80 ℃ | 6 | 99 | 7 |
3 | DMSO-d6 | Cs2CO3 (0.2 equiv.) | 40 ℃ | 6 | 98 | 71 |
4 | DMSO-d6 | LiOtBu (0.2 equiv.) | r.t. | 6 | 97 | 60 |
5 | DMSO-d6 | NaOtBu (0.2 equiv.) | r.t. | 6 | 99 | 89 |
6 | DMSO-d6 | NaOtBu (0.1 equiv.) | r.t. | 6 | 97 | 97 |
7 | DMSO-d6 | KOtBu (0.2 equiv.) | r.t. | 6 | 98 | 98 |
8 | DMSO-d6 | KOtBu (0.1 equiv.) | r.t. | 6 | 98 | 97 |
9 | Acetone-d6 | KOtBu (0.1 equiv.) | r.t. | 6 | 98 | 0 |
10 | D2O | KOtBu (0.1 equiv.) | r.t. | 6 | 99 | 0 |
11 | CDCl3 | KOtBu (0.1 equiv.) | r.t. | 6 | 97 | 0 |
12 | DMSO-d6 | Without | r.t. | 6 | 98 | 0 |
Entry | Solvent | Base (x equiv.) | Temperature | Time/h | Yieldb/% | D content c/% |
---|---|---|---|---|---|---|
1 | DMSO-d6 | Cs2CO3 (0.2 equiv.) | 80 ℃ | 6 | 98 | 98 |
2 | DMSO-d6 | K2CO3 (0.2 equiv.) | 80 ℃ | 6 | 99 | 7 |
3 | DMSO-d6 | Cs2CO3 (0.2 equiv.) | 40 ℃ | 6 | 98 | 71 |
4 | DMSO-d6 | LiOtBu (0.2 equiv.) | r.t. | 6 | 97 | 60 |
5 | DMSO-d6 | NaOtBu (0.2 equiv.) | r.t. | 6 | 99 | 89 |
6 | DMSO-d6 | NaOtBu (0.1 equiv.) | r.t. | 6 | 97 | 97 |
7 | DMSO-d6 | KOtBu (0.2 equiv.) | r.t. | 6 | 98 | 98 |
8 | DMSO-d6 | KOtBu (0.1 equiv.) | r.t. | 6 | 98 | 97 |
9 | Acetone-d6 | KOtBu (0.1 equiv.) | r.t. | 6 | 98 | 0 |
10 | D2O | KOtBu (0.1 equiv.) | r.t. | 6 | 99 | 0 |
11 | CDCl3 | KOtBu (0.1 equiv.) | r.t. | 6 | 97 | 0 |
12 | DMSO-d6 | Without | r.t. | 6 | 98 | 0 |
Entry | R | Product | Method | Yieldb/% | D contentc/ % |
---|---|---|---|---|---|
1 | Ph | 2a | A, 6 h | 96 | 97 |
2 | p-CH3C6H4 | 2b | B, 6 h | 96 | 93 |
3 | m-CH3C6H4 | 2c | A, 6 h | 98 | 96 |
4 | p-CH3OC6H4 | 2d | B, 12 h | 97 | 98 |
5 | o-CH3OC6H4 | 2e | B, 8 h | 95 | 100 |
6 | o-EtOC6H4 | 2f | A, 6 h | 93 | 96 |
7 | p-EtOC6H4 | 2g | C, 6 h | 95 | 96 |
8 | p-CNC6H4 | 2h | C, 6 h | 95 | 96 |
9 | m-CNC6H4 | 2i | B, 2.5 h | 96 | 93 |
10 | p-ClC6H4 | 2j | B, 3.5 h | 97 | 99 |
11 | o-ClC6H4 | 2k | A, 6 h | 97 | 70 |
12 | p-BrC6H4 | 2l | C, 6 h | 96 | 96 |
13 | m-BrC6H4 | 2m | B, 4 h | 98 | 99 |
14 | m-CF3C6H4 | 2n | B, 2.5 h | 98 | 97 |
15 | n-C9H19 | 2o | B, 6 h | 95 | 96 |
16 | PhCH2 | 2p | B, 6 h | 93 | 100 (α-D: 98) |
Entry | R | Product | Method | Yieldb/% | D contentc/ % |
---|---|---|---|---|---|
1 | Ph | 2a | A, 6 h | 96 | 97 |
2 | p-CH3C6H4 | 2b | B, 6 h | 96 | 93 |
3 | m-CH3C6H4 | 2c | A, 6 h | 98 | 96 |
4 | p-CH3OC6H4 | 2d | B, 12 h | 97 | 98 |
5 | o-CH3OC6H4 | 2e | B, 8 h | 95 | 100 |
6 | o-EtOC6H4 | 2f | A, 6 h | 93 | 96 |
7 | p-EtOC6H4 | 2g | C, 6 h | 95 | 96 |
8 | p-CNC6H4 | 2h | C, 6 h | 95 | 96 |
9 | m-CNC6H4 | 2i | B, 2.5 h | 96 | 93 |
10 | p-ClC6H4 | 2j | B, 3.5 h | 97 | 99 |
11 | o-ClC6H4 | 2k | A, 6 h | 97 | 70 |
12 | p-BrC6H4 | 2l | C, 6 h | 96 | 96 |
13 | m-BrC6H4 | 2m | B, 4 h | 98 | 99 |
14 | m-CF3C6H4 | 2n | B, 2.5 h | 98 | 97 |
15 | n-C9H19 | 2o | B, 6 h | 95 | 96 |
16 | PhCH2 | 2p | B, 6 h | 93 | 100 (α-D: 98) |
Entry | R | Product | Yieldb/% | D-4c/% | D-5c/% |
---|---|---|---|---|---|
1 | Ph | 5a | 93 | 96 | 6 |
2 | p-CH3OC6H4 | 5b | 95 | 87 | 5 |
3 | o-CH3OC6H4 | 5c | 92 | 92 | 3 |
4 | p-EtOC6H4 | 5d | 95 | 92 | 4 |
5 | m-CH3C6H4 | 5e | 91 | 91 | 11 |
6 | p-ClC6H4 | 5f | 96 | 97 | 3 |
7 | m-ClC6H4 | 5g | 95 | 92 | 0 |
8 | p-BrC6H4 | 5h | 97 | 96 | 3 |
9 | m-BrC6H4 | 5i | 96 | 95 | 0 |
10 | o-BrC6H4 | 5j | 95 | 95 | 5 |
11 | p-CNC6H4 | 5k | 97 | 91 | 0 |
12 | m-CF3C6H4 | 5l | 89 | 95 | 0 |
Entry | R | Product | Yieldb/% | D-4c/% | D-5c/% |
---|---|---|---|---|---|
1 | Ph | 5a | 93 | 96 | 6 |
2 | p-CH3OC6H4 | 5b | 95 | 87 | 5 |
3 | o-CH3OC6H4 | 5c | 92 | 92 | 3 |
4 | p-EtOC6H4 | 5d | 95 | 92 | 4 |
5 | m-CH3C6H4 | 5e | 91 | 91 | 11 |
6 | p-ClC6H4 | 5f | 96 | 97 | 3 |
7 | m-ClC6H4 | 5g | 95 | 92 | 0 |
8 | p-BrC6H4 | 5h | 97 | 96 | 3 |
9 | m-BrC6H4 | 5i | 96 | 95 | 0 |
10 | o-BrC6H4 | 5j | 95 | 95 | 5 |
11 | p-CNC6H4 | 5k | 97 | 91 | 0 |
12 | m-CF3C6H4 | 5l | 89 | 95 | 0 |
[1] |
(a) Yang, J. Deuterium: Discovery and Applications in Organic Chemistry, Elsevier, Amsterdam, 2016, pp. 1-116.
pmid: 12477364 |
(b) Gómez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857.
doi: 10.1021/cr100436k pmid: 12477364 |
|
(c) Hesk, D. J. Labelled Compd. Radiopharm. 2020, 63, 247.
doi: 10.1002/jlcr.3801 pmid: 12477364 |
|
(d) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., Int. Ed. 2018, 57, 1758.
doi: 10.1002/anie.201704146 pmid: 12477364 |
|
(e) Helfenbein, J.; Lartigue, C.; Noirault, E.; Azim, E.; Legailliard, J.; Galmier, M. J.; Madelmont, J. C. J. Med. Chem. 2002, 45, 5806.
pmid: 12477364 |
|
(f) Gardner, K. H.; Kay, L. E. J. Am. Chem. Soc. 1997, 119, 7599.
doi: 10.1021/ja9706514 pmid: 12477364 |
|
(g) Yang, X.; Ben, H.; Ragauskas, A. J. Asian J. Org. Chem. 2021, 10, 2473.
doi: 10.1002/ajoc.202100381 pmid: 12477364 |
|
[2] |
(a) Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333.
pmid: 29024330 |
(b) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., Int. Ed. 2018, 57, 3022.
doi: 10.1002/anie.201708903 pmid: 29024330 |
|
(c) Zhou, R.; Ma, L.; Yang, X.; Cao, J. Org. Chem. Front. 2021, 8, 426.
doi: 10.1039/D0QO01299H pmid: 29024330 |
|
(d) Gant, T. G. J. Med. Chem. 2014, 57, 3595.
doi: 10.1021/jm4007998 pmid: 29024330 |
|
[3] |
Frank, S.; Stamler, D.; Kayson, E.; Claassen, D. O.; Colcher, A. JAMA Neurol. 2017, 74, 977.
doi: 10.1001/jamaneurol.2017.1352 |
[4] |
Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. J. Med. Chem. 2019, 62, 5276.
doi: 10.1021/acs.jmedchem.8b01808 |
[5] |
(a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., Int. Ed. 2007, 46, 7744.
doi: 10.1002/anie.200700039 pmid: 29024330 |
(b) Hu, G.-Q.; Bai, J.-W.; Li, E.-C.; Liu, K.-H.; Sheng, F.-F.; Zhang, H.-H. Org. Lett. 2021, 23, 1554.
doi: 10.1021/acs.orglett.0c04139 pmid: 29024330 |
|
(c) Lepron, M.; Daniel-Bertrand, M.; Mencia, G.; Chaudret, B.; Feuillastre, S.; Pieters, G. Acc. Chem. Res. 2021, 54, 1465.
doi: 10.1021/acs.accounts.0c00721 pmid: 29024330 |
|
(d) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., Int. Ed. 2018, 57, 3022.
doi: 10.1002/anie.201708903 pmid: 29024330 |
|
(e) Junk, T.; Catallo, W. J. Chem. Soc. Rev. 1997, 26, 401.
doi: 10.1039/CS9972600401 pmid: 29024330 |
|
(f) Wu, D.-C.; Bai, J.-W.; Guo, L.; Hu, G.-Q.; Liu, K.-H.; Sheng, F.-F.; Zhang, H.-H.; Sun, Z.-Y.; Shen, K.; Liu, X. Tetrahedron Lett. 2021, 66, 152807.
doi: 10.1016/j.tetlet.2020.152807 pmid: 29024330 |
|
[6] |
(a) Tie, L.; Shan, X.-H.; Qu, J.-P.; Kang, Y.-B. Org. Chem. Front. 2021, 8, 2981.
doi: 10.1039/D1QO00265A pmid: 32149509 |
(b) Greene, A. K.; Scott, L. T. J. Org. Chem. 2013, 78, 2139.
doi: 10.1021/jo301903m pmid: 32149509 |
|
(c) Martin, J.; Eyselein, J.; Grams, S.; Harder, S. ACS Catal. 2020, 10, 7792.
doi: 10.1021/acscatal.0c01359 pmid: 32149509 |
|
(d) Alburquerque, P. R.; Ramachandran, B. R.; Junk, T.; Karsili, T. N. V. J. Phys. Chem. A 2020, 124, 2530.
doi: 10.1021/acs.jpca.9b10892 pmid: 32149509 |
|
[7] |
(a) Bamford, K. L.; Qu, Z.-W.; Stephan, D. W. J. Am. Chem. Soc. 2019, 141, 6180.
doi: 10.1021/jacs.9b02510 pmid: 30943365 |
(b) Liang, X.; Duttwyler, S. Asian J. Org. Chem. 2017, 6, 1063.
doi: 10.1002/ajoc.201700218 pmid: 30943365 |
|
(c) Duttwyle, S.; Butterfiel, A. M.; Siegel, J. S. J. Org. Chem. 2013, 78, 2134.
doi: 10.1021/jo302201a pmid: 30943365 |
|
[8] |
(a) Anthony, S. M.; Kelleghan, A. V.; Mehta, M. M.; Garg, N. K. Nat. Catal. 2019, 2, 1058.
doi: 10.1038/s41929-019-0393-5 pmid: 33259211 |
(b) Geng, H.; Chen, X.; Gui, J.; Zhang, Y.; Shen, Z.; Qian, P.; Chen, J.; Zhang, S.; Wang, W. Nat. Catal. 2019, 2, 1071.
doi: 10.1038/s41929-019-0370-z pmid: 33259211 |
|
(c) Zhang, X.; Chen, Q.; Song, R.; Xu, J.; Tian, W.; Li, S.; Jin, Z.; Chi, Y. R. ACS Catal. 2020, 10, 5475.
doi: 10.1021/acscatal.0c00636 pmid: 33259211 |
|
(d) Landge, V. G.; Shrestha, K. K.; Grant, A. J.; Young, M. C. Org. Lett. 2020, 22, 9745.
doi: 10.1021/acs.orglett.0c03839 pmid: 33259211 |
|
[9] |
(a) Kerr, W. J.; Knox, G. J.; Paterson, L. C. J. Labelled Comp. Radiopharm. 2020, 63, 281.
doi: 10.1002/jlcr.3812 |
(b) Koneczny, M.; Ho, L. P.; Nasr, A.; Freytag, M.; Jones, P. G.; Tamm, M. Adv. Synth. Catal. 2020, 362, 3857.
doi: 10.1002/adsc.202000438 |
|
(c) Dong, B.; Cong, X.; Hao, N. RSC Adv. 2020, 10, 25475.
doi: 10.1039/D0RA02358B |
|
(d) Valero, M.; Kruissink, T.; Blass, J.; Weck, R.; Güssregen, S.; Plowright, A. T.; Derdau, V. Angew. Chem. 2020, 59, 5626.
doi: 10.1002/anie.201914220 |
|
(e) Valero, M.; Bouzouita, D.; Palazzolo, A.; Atzrodt, J.; Dugave, C.; Tricard, S.; Feuillastre, S.; Pieters, G.; Chaudret, B.; Derdau, V. Angew. Chem., Int. Ed. 2020, 59, 3517.
doi: 10.1002/anie.201914369 |
|
(f) Giles, R.; Kyung, G. A.; Jung, W. Tetrahedron Lett. 2015, 56, 6231.
doi: 10.1016/j.tetlet.2015.09.100 |
|
[10] |
Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; Macmillan, D. W. C. Science 2017, 358, 1182.
doi: 10.1126/science.aap9674 |
[11] |
(a) Randolph, C.; Lahive, C. W.; Sami, S.; Havenith, R. W. A.; Heeres, H. J.; Deuss, P. J. Org. Process Res. Dev. 2018, 22, 1663.
doi: 10.1021/acs.oprd.8b00303 pmid: 32791840 |
(b) Fischer, O.; Hubert, A.; Heinrich, M. R. J. Org. Chem. 2020, 85, 11856.
doi: 10.1021/acs.joc.0c01604 pmid: 32791840 |
|
(c) Zhan, M.; Xu, R.; Tian, Y.; Jiang, H.; Zhao, L.; Xie, Y.; Chen, Y. Eur. J. Org. Chem. 2015, 3370.
pmid: 32791840 |
|
[12] |
(a) Hu, G.-Q.; Li, E.-C.; Zhang, H.-H.; Huang, W. Org. Biomol. Chem. 2020, 18, 6627.
doi: 10.1039/D0OB01273D |
(b) Salamanca, V.; Albéniz, A. C. Eur. J. Org. Chem. 2020, 3206.
|
|
[13] |
Liu, W.; Cao, L.; Zhang, Z.; Zhang, G.; Huang, S.; Huang, L.; Zhao, P.; Yan, X. Org. Lett. 2020, 22, 2210.
doi: 10.1021/acs.orglett.0c00402 |
[14] |
(a) Zhang, J.; Zhang, S.; Gogula, T.; Zou, H. ACS Catal. 2020, 10, 7486.
doi: 10.1021/acscatal.0c01674 |
(b) Wu, J.; Qian, B.; Lu, L.; Yang, H.; Shang, Y.; Zhang, J. Org. Chem. Front. 2021, 8, 3032.
doi: 10.1039/D1QO00133G |
|
[15] |
(a) Kopf, S.; Ye, F.; Neumann, H.; Beller, M. Chem.-Eur. J. 2021, 27, 9768.
doi: 10.1002/chem.202100468 |
(b) Kopf, S.; Neumann, H.; Beller, M. Chem. Commun. 2021, 57, 1137.
doi: 10.1039/D0CC07675A |
|
[16] |
(a) Tlahuext-Aca, A.; Hartwig, J. F. ACS Catal. 2021, 11, 1119.
doi: 10.1021/acscatal.0c04917 pmid: 35586574 |
(b) Ahmed, B. M.; Mezei, G. J. Org. Chem. 2018, 83, 1649.
doi: 10.1021/acs.joc.7b03062 pmid: 35586574 |
|
[17] |
Koniarczyk, J. L.; Hesk, D.; Overgard, A.; Davies, I. W.; McNally, A. J. Am. Chem. Soc. 2018, 140, 1990.
doi: 10.1021/jacs.7b11710 pmid: 29377684 |
[18] |
(a) Agalave, S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J. 2011, 6, 2696.
doi: 10.1002/asia.201100432 pmid: 28676407 |
(b) Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. RSC Adv. 2020, 10, 5610.
doi: 10.1039/C9RA09510A pmid: 28676407 |
|
(c) Dheer, D.; Singh, V.; Shankar, R. Bioorg. Chem. 2017, 71, 30.
doi: 10.1016/j.bioorg.2017.01.010 pmid: 28676407 |
|
(d) Bonandi, E.; Christodoulou, M. S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. Drug Discovery Today 2017, 22, 1572.
doi: S1359-6446(17)30104-6 pmid: 28676407 |
|
(e) Suazo, K. F.; Park, K.-Y.; Distefano, M. D. Chem. Rev. 2021, 121, 7178.
doi: 10.1021/acs.chemrev.0c01108 pmid: 28676407 |
|
(f) Aromí, G.; Barrios, L. A.; Roubeau, O.; Gamez, P. Coord. Chem. Rev. 2011, 255, 485.
doi: 10.1016/j.ccr.2010.10.038 pmid: 28676407 |
|
[19] |
Zhou, Y.; Lecourt, T.; Micouin, L. Angew Chem., Int. Ed. 2010, 49, 2607.
doi: 10.1002/anie.200907016 |
[20] |
Shao, C.; Wang, X.; Xu, J.; Zhao, J.; Zhang, Q.; Hu, Y. J. Org. Chem. 2010, 75, 7002.
doi: 10.1021/jo101495k |
[21] |
Krasiński, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6, 1237.
pmid: 15070306 |
[22] |
Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333.
pmid: 17489598 |
[23] |
Akula, H. K.; Lakshman, M. K. J. Org. Chem. 2012, 77, 8896.
doi: 10.1021/jo301146j pmid: 23016757 |
[24] |
Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333.
pmid: 17489598 |
[25] |
Lutter, F. H.; Grokenberger, L.; Perego, L. A.; Broggini, D.; Lemaire, S.; Wagschal, S.; Knochel, P. Nat Commun. 2020, 11, 4443.
doi: 10.1038/s41467-020-18188-z |
[26] |
Wang, D.; Chen, S.; Wang, J.; Astruc, D.; Chen, B. Tetrahedron 2016, 72, 6375.
doi: 10.1016/j.tet.2016.08.033 |
[27] |
(a) Yang, Y.; Rasmussen, B. A.; Shlaes, D. M. Pharmacol. Ther. 1999, 83, 141.
doi: 10.1016/S0163-7258(99)00027-3 |
(b) Fan, H.; Xu, G.; Chen, Y.; Jiang, Z.; Zhang, S.; Yang, Y.; Ji, R. Eur. J. Med. Chem. 2007, 42, 1137.
doi: 10.1016/j.ejmech.2007.01.012 |
|
[28] |
(a) Gonda, Z.; Lőrincz, K.; Novák, Z. Tetrahedron Lett. 2010, 51, 6275.
doi: 10.1016/j.tetlet.2010.09.097 |
(b) Voronin, V. V.; Ledovskaya, M. S.; Rodygin, K. S.; Ananikov, V. P. Eur. J. Org. Chem. 2021, 5640.
|
|
[29] |
Wu, L.-Y.; Xie, Y.-X.; Chen, Z.-S.; Niu, Y.-N.; Liang, Y.-M. Synlett 2009, 1453.
|
[1] | 李梦竹, 孟博莹, 兰文捷, 傅滨. 邻亚甲醌与硫叶立德反应合成2,3-二取代苯并二氢呋喃化合物[J]. 有机化学, 2024, 44(1): 195-203. |
[2] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
[3] | 肖剑, 武志英, 陈姿依, 赵朋飞, 刘春艳. 四乙烯五胺功能化酚醛树脂作为Knoevenagel缩合反应的高活性酸碱双功能催化剂[J]. 有机化学, 2022, 42(4): 1179-1187. |
[4] | 王子超, 许佑君, 施世良. 碱促进醛亚胺的快速氢硅化反应[J]. 有机化学, 2020, 40(10): 3463-3466. |
[5] | 刘长娥, 于琪瑶, 唐健红, 李加荣. 碱性条件下4(3H)-喹唑啉酮的一锅合成[J]. 有机化学, 2012, (03): 532-537. |
[6] | 沈延昌. 基于金属有机和元素有机化合物参与的新合成方法学 的研究[J]. 有机化学, 2001, 21(11): 816-823. |
[7] | 许遵乐,陈叶荣,汪波,刘汉标,钟增培. 芳并呋喃类化合物的一锅化合成法[J]. 有机化学, 1997, 17(4): 335-339. |
[8] | 张自义,施继成. 2-芳基-5-[4'-(2,2,6,6,-四甲基哌啶-1-氧)氨基]-1,3,4-恶二唑自旋标记化合物的合成[J]. 有机化学, 1991, 11(4): 404-407. |
[9] | 陈朝环,陈耀焕,钟心懋,曾明英,盛怀禹. ^1^5N标记邻位芳香羟肟配位体的核磁共振研究[J]. 有机化学, 1989, 9(4): 343-346. |
[10] | 严兆明,冯冬梅,陈耀焕,盛怀禹. DL-苯丙氨酸-1-14C化学合成及酶促拆分[J]. 有机化学, 1987, 7(3): 216-218. |
[11] | 盛怀禹,林守渊,王执中,陈耀焕. 转移催化(PTC)反应研究III.1-^1^4C,1,1-二溴-2-苯基环丙烷及其取代物的合成[J]. 有机化学, 1986, 6(2): 148-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||