有机化学 ›› 2023, Vol. 43 ›› Issue (6): 1977-1990.DOI: 10.6023/cjoc202212003 上一篇 下一篇
综述与进展
宋亭谕a, 李冉b, 黄利华a,*(), 贾世琨a,*(), 梅光建a,*()
收稿日期:
2022-12-03
修回日期:
2023-01-05
发布日期:
2023-01-18
基金资助:
Tingyu Songa, Ran Lib, Lihua Huanga,*(), Shikun Jiaa,*(), Guangjian Meia,*()
Received:
2022-12-03
Revised:
2023-01-05
Published:
2023-01-18
Contact:
E-mail: Supported by:
文章分享
N—N单键广泛存在于天然产物和生物活性化合物中. 然而, 由于N—N轴不稳定的刻板印象, N—N单键的阻转异构现象长期以来被忽视. 事实上, N—N单键两端氮原子上的孤对之间存在排斥相互作用, 即电子能垒. 该电子能垒会导致N—N单键的旋转受阻, 从而产生稳定的N—N阻转异构体. 自2021年首次被报道以来, 催化不对称合成N—N阻转异构体迅速发展成为一个新兴领域. 这些反应包括不对称的N—H键功能化、不对称的去对称化和(杂)芳香烃环的阻转异构选择性从头构建. 综述了N—N单键阻转异构体催化不对称合成的最新进展.
宋亭谕, 李冉, 黄利华, 贾世琨, 梅光建. N—N单键阻转异构体的催化不对称合成[J]. 有机化学, 2023, 43(6): 1977-1990.
Tingyu Song, Ran Li, Lihua Huang, Shikun Jia, Guangjian Mei. Catalytic Asymmetric Synthesis of N—N Atropisomers[J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1977-1990.
[1] |
Oki, M. Top. Stereochem. 1983, 14, 1.
|
[2] |
(a) Cheng, J. K.; Xiang, S. H.; Tan, B. Acc. Chem. Res. 2022, 55, 2920.
doi: 10.1021/acs.accounts.2c00509 |
(b) Cheng, J. K.; Xiang, S. H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805.
doi: 10.1021/acs.chemrev.0c01306 |
|
(c) Wang, Y. B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
doi: 10.1021/acs.accounts.7b00602 |
|
[3] |
(a) Zhang, H. H.; Shi, F. Acc. Chem. Res. 2022, 55, 2562.
doi: 10.1021/acs.accounts.2c00465 |
(b) Wu, S.; Xiang, S.-H.; Cheng, J. K.; Tan, B. Tetrahedron Chem. 2022, 1, 100009.
doi: 10.1016/j.tchem.2022.100009 |
|
(c) Qin, W.; Liu, Y.; Yan, H. Acc. Chem. Res. 2022, 55, 2780.
doi: 10.1021/acs.accounts.2c00486 |
|
(d) Bai, X.-F.; Cui, Y.-M.; Cao, J.; Xu, L.-W. Acc. Chem. Res. 2022, 55, 2545.
doi: 10.1021/acs.accounts.2c00417 |
|
(e) Zhang, Z.-X.; Zhai, T.-Y.; Ye, L.-W. Chem. Catal. 2021, 1, 1378.
|
|
(f) Song, R.; Xie, Y.; Jin, Z.; Chi, Y. R. Angew. Chem., nt. Ed. 2021, 60, 26026.
|
|
(g) Liu, C. X.; Zhang, W. W.; Yin, S. Y.; Gu, Q.; You, S. L. J. Am. Chem. Soc. 2021, 143, 14025.
doi: 10.1021/jacs.1c07635 |
|
(h) Feng, J.; Gu, Z. SynOpen 2021, 5, 68.
doi: 10.1055/s-0040-1706028 |
|
(i) Da, B. C.; Xiang, S. H.; Li, S.; Tan, B. Chin. J. Chem. 2021, 39, 1787.
doi: 10.1002/cjoc.v39.7 |
|
[4] |
(a) Wu, Y.-J.; Liao, G.; Shi, B.-F. Green Synth. Catal. 2022, 3, 117.
pmid: 26414162 |
(b) Rodriguez-Salamanca, P.; Fernandez, R.; Hornillos, V.; Lassaletta, J. M. Chem.-Eur. J. 2022, 28, e202104442.
pmid: 26414162 |
|
(c) Mei, G.-J.; Koay, W. L.; Guan, C.-Y.; Lu, Y. Chem 2022, 8, 1855.
doi: 10.1016/j.chempr.2022.04.011 pmid: 26414162 |
|
(d) Kitagawa, O. Acc. Chem. Res. 2021, 54, 719.
doi: 10.1021/acs.accounts.0c00767 pmid: 26414162 |
|
(e) Li, T. Z.; Liu, S. J.; Tan, W.; Shi, F. Chem.-Eur. J. 2020, 26, 15779.
doi: 10.1002/chem.v26.68 pmid: 26414162 |
|
(f) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
doi: 10.1021/acs.chemrev.5b00136 pmid: 26414162 |
|
[5] |
Verma, S. M.; Prasad, R. J. Org. Chem. 1973, 38, 1004.
doi: 10.1021/jo00945a031 |
[6] |
Chang, C.; Adams, R. J. Am. Chem. Soc. 1931, 53, 2353.
doi: 10.1021/ja01357a049 |
[7] |
(a) Reddy, P. S.; Bhavani, A. K. D. In Advances in Heterocyclic Chemistry, Vol. 114, Eds.: Scriven, E. F. V.; Ramsden, C. A., Academic Press, 2015, p. 271.
|
(b) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.
doi: 10.1021/np400124n |
|
[8] |
(a) Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurtán, T.; Zhang, C. Eur. J. Org. Chem. 2012, 2012, 5256.
doi: 10.1002/ejoc.201200599 |
(b) Xu, Z.; Baunach, M.; Ding, L.; Hertweck, C. Angew. Chem., nt. Ed. 2012, 51, 10293.
|
|
[9] |
(a) Antognazza, P.; Benincori, T.; Mazzoli, S.; Sannicolo, F.; Pilati, T. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 144, 405.
|
(b) Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E.; Demartin, F.; Pilati, T.; Zotti, G. J. Organomet. Chem. 1997, 529, 445.
doi: 10.1016/S0022-328X(96)06682-X |
|
[10] |
(a) Kobayashi, T.; Ishiwari, F.; Fukushima, T.; Hanaya, K.; Sugai, T.; Higashibayashi, S. Eur. J. Org. Chem. 2021, 2021, 449.
doi: 10.1002/ejoc.v2021.3 |
(b) Rizzo, S.; Menta, S.; Faggi, C.; Pierini, M.; Cirilli, R. J. Chromatogr. A 2014, 1363, 128.
doi: 10.1016/j.chroma.2014.08.060 |
|
(c) Coogan, M. P.; Smart, E.; Hibbs, D. E. Chem. Commun. 1999, 1991.
|
|
[11] |
Mei, G.-J.; Wong, J. J.; Zheng, W.; Nangia, A. A.; Houk, K. N.; Lu, Y. Chem 2021, 7, 2743.
doi: 10.1016/j.chempr.2021.07.013 |
[12] |
Wang, X. M.; Zhang, P.; Xu, Q.; Guo, C. Q.; Zhang, D. B.; Lu, C. J.; Liu, R. R. J. Am. Chem. Soc. 2021, 143, 15005.
doi: 10.1021/jacs.1c07741 |
[13] |
(a) Kitagawa, O.; Kohriyama, M.; Taguchi, T. J. Org. Chem. 2002, 67, 8682.
pmid: 12444660 |
(b) Terauchi, J.; Curran, D. P. Tetrahedron 2003, 14, 587.
pmid: 12444660 |
|
(c) Liu, Y.; Feng, X.; Du, H. Org. Biomol. Chem. 2015, 13, 125.
doi: 10.1039/C4OB01087F pmid: 12444660 |
|
(d) Gao, Z.; Yan, C.-X.; Qian, J.; Yang, H.; Zhou, P.; Zhang, J.; Jiang, G. ACS Catal. 2021, 11, 6931.
doi: 10.1021/acscatal.1c01345 pmid: 12444660 |
|
[14] |
(a) Li, S. L.; Yang, C.; Wu, Q.; Zheng, H. L.; Li, X.; Cheng, J. P. J. Am. Chem. Soc. 2018, 140, 12836.
doi: 10.1021/jacs.8b06014 |
(b) Lu, S.; Ng, S. V. H.; Lovato, K.; Ong, J. Y.; Poh, S. B.; Ng, X. Q.; Kurti, L.; Zhao, Y. Nat. Commun. 2019, 10, 3061.
doi: 10.1038/s41467-019-10940-4 |
|
(c) Yang, G.-H.; Zheng, H.; Li, X.; Cheng, J.-P. ACS Catal. 2020, 10, 2324.
doi: 10.1021/acscatal.9b05443 |
|
(d) Zheng, G.; Li, X.; Cheng, J.-P. Org. Lett. 2021, 23, 3997.
doi: 10.1021/acs.orglett.1c01201 |
|
(e) Xiao, X.; Lu, Y.-J.; Tian, H.-Y.; Zhou, H.-J.; Li, J.-W.; Yao, Y.-P.; Ke, M.-L.; Chen, F.-E. Org. Chem. Front. 2022, 9, 2830.
doi: 10.1039/D2QO00219A |
|
[15] |
Merad, J.; Pons, J.-M.; Chuzel, O.; Bressy, C. Eur. J. Org. Chem. 2016, 2016, 5589.
doi: 10.1002/ejoc.201600399 |
[16] |
(a) Li, D.; Wang, S.; Ge, S.; Dong, S.; Feng, X. Org. Lett. 2020, 22, 5331.
doi: 10.1021/acs.orglett.0c01581 |
(b) Ong, J. Y.; Ng, X. Q.; Lu, S.; Zhao, Y. Org. Lett. 2020, 22, 6447.
doi: 10.1021/acs.orglett.0c02266 |
|
(c) Munday, E. S.; Grove, M. A.; Feoktistova, T.; Brueckner, A. C.; Walden, D. M.; Young, C. M.; Slawin, A. M. Z.; Campbell, A. D.; Cheong, P. H.-Y.; Smith, A. D. Angew. Chem.,Int. Ed. 2020, 59, 7897.
doi: 10.1002/anie.v59.20 |
|
[17] |
Lin, W.; Zhao, Q.; Li, Y.; Pan, M.; Yang, C.; Yang, G.-H.; Li, X. Chem. Sci. 2022, 13, 141.
doi: 10.1039/D1SC05360D |
[18] |
Shirakawa, S.; Maruoka, K. Angew. Chem.,Int. Ed. 2013, 52, 4312.
doi: 10.1002/anie.201206835 |
[19] |
(a) Shirakawa, S.; Liu, K.; Maruoka, K. J. Am. Chem. Soc. 2012, 134, 916.
doi: 10.1021/ja211069f pmid: 28537599 |
(b) Jolliffe, J. D.; Armstrong, R. J.; Smith, M. D. Nat. Chem. 2017, 9, 558.
doi: 10.1038/nchem.2710 pmid: 28537599 |
|
(c) Wang, Y. B.; Wu, Q. H.; Zhou, Z. P.; Xiang, S. H.; Cui, Y.; Yu, P.; Tan, B. Angew. Chem.,Int. Ed. 2019, 58, 13443.
doi: 10.1002/anie.v58.38 pmid: 28537599 |
|
[20] |
Pan, M.; Shao, Y.-B.; Zhao, Q.; Li, X. Org. Lett. 2022, 24, 374.
doi: 10.1021/acs.orglett.1c04028 |
[21] |
Portolani, C.; Centonze, G.; Luciani, S.; Pellegrini, A.; Righi, P.; Mazzanti, A.; Ciogli, A.; Sorato, A.; Bencivenni, G. Angew. Chem., nt. Ed. 2022, 61, e202209895.
|
[22] |
(a) García-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313.
pmid: 21731960 |
(b) Rendler, S.; Oestreich, M. Angew. Chem., nt. Ed. 2008, 47, 248.
pmid: 21731960 |
|
(c) Díaz de Villegas, M. D.; Gálvez, J. A.; Etayo, P.; Badorrey, R.; López-Ram-de-Víu, P. Chem. Soc. Rev. 2011, 40, 5564.
doi: 10.1039/c1cs15120g pmid: 21731960 |
|
(d) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
doi: 10.1021/acs.chemrev.6b00094 pmid: 21731960 |
|
[23] |
Zhang, L.; Xiang, S. H.; Wang, J. J.; Xiao, J.; Wang, J. Q.; Tan, B. Nat. Commun. 2019, 10, 566.
doi: 10.1038/s41467-019-08447-z pmid: 30718716 |
[24] |
(a) Rousseaux, S.; Vrancken, E.; Campagne, J.-M. Angew. Chem., nt. Ed. 2012, 51, 10934.
pmid: 26861673 |
(b) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
doi: 10.1021/acs.chemrev.5b00547 pmid: 26861673 |
|
[25] |
(a) Bigot, A.; Williamson, A. E.; Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778.
doi: 10.1021/ja206047h pmid: 21848265 |
(b) Harvey, J. S.; Simonovich, S. P.; Jamison, C. R.; MacMillan, D. W. J. Am. Chem. Soc. 2011, 133, 13782.
doi: 10.1021/ja206050b pmid: 21848265 |
|
(c) Wu, H.; Wang, Q.; Zhu, J. Angew. Chem., nt. Ed. 2018, 57, 2721.
pmid: 21848265 |
|
[26] |
Xu, Q.; Zhang, H.; Ge, F.-B.; Wang, X.-M.; Zhang, P.; Lu, C.-J.; Liu, R.-R. Org. Lett. 2022, 24, 3138.
doi: 10.1021/acs.orglett.2c00812 |
[27] |
Zhang, L.; Zhang, J.; Ma, J.; Cheng, D. J.; Tan, B. J. Am. Chem. Soc. 2017, 139, 1714.
doi: 10.1021/jacs.6b09634 pmid: 28106384 |
[28] |
Kamikawa, K.; Arae, S.; Wu, W.-Y.; Nakamura, C.; Takahashi, T.; Ogasawara, M. Chem.-Eur. J. 2015, 21, 4954.
doi: 10.1002/chem.201500226 pmid: 25676145 |
[29] |
Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y.; Shi, F. Angew. Chem., nt. Ed. 2017, 56, 116.
|
[30] |
Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou, L. Chem. Sci. 2019, 10, 6777.
doi: 10.1039/C9SC00810A |
[31] |
Ma, C.; Jiang, F.; Sheng, F.-T.; Jiao, Y.; Mei, G.-J.; Shi, F. Angew. Chem., nt. Ed. 2019, 58, 3014.
|
[32] |
Ma, C.; Sheng, F. T.; Wang, H. Q.; Deng, S.; Zhang, Y. C.; Jiao, Y.; Tan, W.; Shi, F. J. Am. Chem. Soc. 2020, 142, 15686.
doi: 10.1021/jacs.0c00208 |
[33] |
Chen, K.-W.; Chen, Z.-H.; Yang, S.; Wu, S.-F.; Zhang, Y.-C.; Shi, F. Angew. Chem., nt. Ed. 2022, 61, e202116829.
|
[34] |
Gao, Y.; Wang, L.-Y.; Zhang, T.; Yang, B.-M.; Zhao, Y. Angew. Chem., nt. Ed. 2022, 61, e202200371.
|
[35] |
Zhang, P.; Xu, Q.; Wang, X.-M.; Feng, J.; Lu, C. J.; Li, Y.; Liu, R. R. Angew. Chem., nt. Ed. 2022, 61, e202212101.
|
[36] |
Wang, Y. B.; Zheng, S. C.; Hu, Y. M.; Tan, B. Nat. Commun. 2017, 8, 15489.
doi: 10.1038/ncomms15489 |
[37] |
Pu, L.-Y.; Zhang, Y.-J.; Liu, W.; Teng, F. Chem. Commun. 2022, 58, 13131.
doi: 10.1039/D2CC05172A |
[1] | 杜鹏, 周海峰, 沈冠硕, 邹坤. 手性缩醛的催化不对称合成研究进展[J]. 有机化学, 2015, 35(8): 1641-1649. |
[2] | 肖世基, 方冬梅, 夏兵, 徐林峰, 徐宏喜, 蒋艳, 陈放, 丁立生, 周燕. 裸蒴中四个新的联苯四氢呋喃型木脂素[J]. 有机化学, 2014, 34(8): 1677-1681. |
[3] | 吴秋华,高勇军,李芝,王俊敏,王春马晶军,宋双居. 手性(硫)脲衍生物在不对称有机催化反应中的应用[J]. 有机化学, 2007, 27(12): 1491-1501. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||