有机化学 ›› 2023, Vol. 43 ›› Issue (7): 2323-2337.DOI: 10.6023/cjoc202212036 上一篇 下一篇
综述与进展
收稿日期:
2022-12-29
修回日期:
2023-02-22
发布日期:
2023-03-23
通讯作者:
胡方芝, 李帅帅
作者简介:
基金资助:
Yuzhuo Chen, Hongmei Sun, Liang Wang, Fangzhi Hu(), Shuaishuai Li()
Received:
2022-12-29
Revised:
2023-02-22
Published:
2023-03-23
Contact:
Fangzhi Hu, Shuaishuai Li
About author:
Supported by:
文章分享
杂环化合物的高效构建是有机合成领域的重要课题, [m+n]环化反应可将两个相对简单易得的反应底物进行组合, 是构建环状骨架的重要手段. 基于负氢迁移策略的[m+n]环化反应将两个相对易得的底物原位生成负氢受体, 避免反应底物的预制, 具有高的原子和步骤经济性. 选取基于负氢迁移策略的[m+n]环化反应为研究对象, 从通过该类反应所构建的氮杂、氧杂环骨架着手, 按照生成氮杂、氧杂环的大小进行分类, 综述了2018年以来基于负氢迁移策略的[m+n]环化反应的研究进展, 并对该领域的发展方向进行了展望.
陈玉琢, 孙红梅, 王亮, 胡方芝, 李帅帅. 基于α-氢迁移策略构建杂环骨架的研究进展[J]. 有机化学, 2023, 43(7): 2323-2337.
Yuzhuo Chen, Hongmei Sun, Liang Wang, Fangzhi Hu, Shuaishuai Li. Research Progress on Construction of Heterocyclic Skeletons Based on α-Hydride Transfer Strategy[J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2323-2337.
[1] |
(a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b pmid: 25255204 |
(b) Delost, M. D.; Smith, D. T.; Anderson, B. J.; Njardarson, J. T. J. Med. Chem. 2018, 61, 10996.
doi: 10.1021/acs.jmedchem.8b00876 pmid: 25255204 |
|
(c) Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H.; Paul, A. T.; Kumar, R. J. Med. Chem. 2021, 64, 2339.
doi: 10.1021/acs.jmedchem.0c01786 pmid: 25255204 |
|
(d) Wang, L.; Zhang, Z.; Han, H.; Liu, X.; Bu, Z.; Wang, Q. Chin. J. Org. Chem. 2021, 41, 12 (in Chinese).
doi: 10.6023/cjoc202007045 pmid: 25255204 |
|
(王乐乐, 张子莹, 韩华彬, 刘雄利, 卜站伟, 王琪琳, 有机化学, 2021, 41, 12.)
doi: 10.6023/cjoc202007045 pmid: 25255204 |
|
(e) Zhang, H.; Shi, F. Chin. J. Org. Chem. 2022, 42, 3351 (in Chinese).
doi: 10.6023/cjoc202203018 pmid: 25255204 |
|
(张洪浩, 石枫, 有机化学, 2022, 42, 3351.)
doi: 10.6023/cjoc202203018 pmid: 25255204 |
|
(f) Zhang, Z.; Han, H.; Wang, L.; Bu, Z.; Xie, Y.; Wang, Q. Org. Biomol. Chem. 2021, 19, 3960.
doi: 10.1039/D1OB00096A pmid: 25255204 |
|
(g) Zhang, W. H.; Chen, S.; Liu, X. L.; Lin, B.; Liu, X. W.; Zhou, Y. Bioorg. Med. Chem. Lett. 2020, 30, 127410.
doi: 10.1016/j.bmcl.2020.127410 pmid: 25255204 |
|
(h) Zhang, M.; Wang, J.-X.; Chang, S.-Q.; Liu, X.-L.; Zuo, X.; Zhou, Y. Chin. Chem. Lett. 2020, 31, 381.
doi: 10.1016/j.cclet.2019.06.015 pmid: 25255204 |
|
(i) Wang, L.; Han, H.; Gu, L.; Zhang, W.; Zhao, J.; Wang, Q. Chem. Sci. 2021, 12, 15389.
doi: 10.1039/D1SC05741C pmid: 25255204 |
|
[2] |
(a) Muthukrishnan, I.; Sridharan, V.; Menendez, J. C. Chem. Rev. 2019, 119, 5057.
doi: 10.1021/acs.chemrev.8b00567 pmid: 30963764 |
(b) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
doi: 10.1021/acs.chemrev.7b00271 pmid: 30963764 |
|
(c) Wang, Y.; Zhang, W.-X.; Xi, Z. Chem. Soc. Rev. 2020, 49, 5810.
doi: 10.1039/C9CS00478E pmid: 30963764 |
|
[3] |
For reviews on the formal 4+1 annulation reactions, see: a Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
|
(b) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Rev. 2015, 115, 5301.
doi: 10.1021/cr5006974 |
|
[4] |
For reviews on the formal 4+2 annulation reactions, see: a Takao, K.; Munakata, R.; Tadano, K. Chem. Rev. 2005, 105, 4779.
|
[24] |
Cao, L.; Hu, F.; Sun, H.; Zhang, X.; Li, S.-S. Org. Chem. Front. 2022, 9, 1668.
doi: 10.1039/D1QO01755A |
[25] |
(a) Feuston, B. P.; Culberson, J. C.; Duggan, M. E.; Hartman, G. D.; Leu, C.-T.; Rodan, S. B. J. Med. Chem. 2002, 45, 5640.
doi: 10.1021/jm0203130 pmid: 31916771 |
(b) Sum, F.; Dusza, J.; Delos Santos, E.; Grosu, G.; Reich, M.; Du, X.; Albright, J. D.; Chan, P.; Coupet, J.; Ru, X.; Mazandarani, H.; Saunders, T. Bioorg. Med. Chem. Lett. 2003, 13, 2195.
doi: 10.1016/S0960-894X(03)00388-3 pmid: 31916771 |
|
(c) Kunick, C.; Bleeker, C.; Prühs, C.; Totzke, F.; Schachtele, C.; Kubbutat, M. H. G.; Link, A. Bioorg. Med. Chem. Lett. 2006, 16, 2148.
pmid: 31916771 |
|
(d) Palma, A.; Yepes, A. F.; Leal, S. M.; Coronado, C. A.; Escobar, P. Bioorg. Med. Chem. Lett. 2009, 19, 2360.
doi: 10.1016/j.bmcl.2008.05.013 pmid: 31916771 |
|
(e) Xu, Y.; Zhang, L.; Liu, M.; Zhang, X.; Zhang, X.; Fan, X. Org. Biomol. Chem. 2019, 17, 8706.
doi: 10.1039/C9OB01830A pmid: 31916771 |
|
(g) Wang, L.-L.; Han, H.-B.; Cui, Z.-H.; Zhao, J.-W.; Bu, Z.-W.; Wang, Q.-L. Org. Lett. 2020, 22, 873.
doi: 10.1021/acs.orglett.9b04398 pmid: 31916771 |
|
(h) Liu, J.; Xiao, X.; Lai, Y.; Zhang, Z. Org. Chem. Front. 2022, 9, 2256.
doi: 10.1039/D2QO00081D pmid: 31916771 |
|
[26] |
Liu, S.; Zhao, T.; Qu, J.; Wang, B. Adv. Synth. Catal. 2018, 360, 4094.
doi: 10.1002/adsc.v360.21 |
[27] |
Wang, S.; Shen, Y.-B.; Li, L.-F.; Qiu, B.; Yu, L.; Liu, Q.; Xiao, J. Org. Lett. 2019, 21, 8904.
doi: 10.1021/acs.orglett.9b03011 |
[28] |
Bai, G.; Dong, F.; Xu, L.; Liu, Y.; Wang, L.; Li, S.-S. Org. Lett. 2019, 21, 6225.
doi: 10.1021/acs.orglett.9b02051 |
[29] |
Xie, R.; Chen, S.; Wang, Y.; Yin, X.; Li, S.-S.; Xu, L.; Wang, L. Org. Chem. Front. 2022, 9, 5205.
doi: 10.1039/D2QO01103D |
[30] |
Yang, X.; Wang, L.; Hu, F.; Xu, L.; Li, S.; Li, S.-S. Org. Lett. 2021, 23, 358.
doi: 10.1021/acs.orglett.0c03863 |
[4] |
(b) Li, J.-L.; Liu, T.-Y.; Chen, Y.-C. Acc. Chem. Res. 2012, 45, 1491.
doi: 10.1021/ar3000822 |
(c) Jiang, X.-X.; Wang, R. Chem. Rev. 2013, 113, 5515.
doi: 10.1021/cr300436a |
|
[5] |
(a) For reviews on the formal 4+3 annulation reactions, see: Harmata, M. Chem. Commun. 2010, 46, 8886.
doi: 10.1039/c0cc03620j |
(b) Lohse, A. G.; Hsung, R. P. Chem.-Eur. J. 2011, 17, 3812.
doi: 10.1002/chem.201100260 |
|
(c) Nguyen, T. V.; Hartmann, J. M.; Enders, D. Synthesis 2013, 845.
|
|
[6] |
For reviews on hydride transfer reactions, see: (b) Hu, F.; Shen, Y.-B.; Wang, L.; Li, S.-S. Org. Chem. Front. 2022, 9, 5041.
doi: 10.1039/D2QO01054B pmid: 24027042 |
(b) Shen, Y.-B.; Hu, F.; Li, S.-S. Tetrahedron 2022, 127, 133089.
doi: 10.1016/j.tet.2022.133089 pmid: 24027042 |
|
(c) Liu, H.; Quan, Y.; Xie, L.; Li, X.; Xie, X. Front. Chem. 2022, 10, 840934.
doi: 10.3389/fchem.2022.840934 pmid: 24027042 |
|
(d) An, X.-D.; Xiao, J. Org. Chem. Front. 2021, 8, 1364.
doi: 10.1039/D0QO01502D pmid: 24027042 |
|
(e) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191.
doi: 10.1002/tcr.201600003 pmid: 24027042 |
|
(f) Wang, L.; Xiao, J. Top. Curr. Chem. 2016, 374, 17.
pmid: 24027042 |
|
(g) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010.
doi: 10.1002/anie.v53.20 pmid: 24027042 |
|
(h) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356, 1137.
doi: 10.1002/adsc.v356.6 pmid: 24027042 |
|
(i) Peng, B.; Maulide, N. Chem.-Eur. J. 2013, 19, 13274.
doi: 10.1002/chem.201301522 pmid: 24027042 |
|
(j) Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 1374.
doi: 10.3762/bjoc.8.159 pmid: 24027042 |
|
(k) Shen, Y.-B.; Hu, F.; Li, S.-S. Org. Biomol. Chem. 2023, 21, 700.
doi: 10.1039/D2OB02146C pmid: 24027042 |
|
[7] |
For selected examples on hydride transfer reaction, see: (a) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12, 1732.
doi: 10.1021/ol100316k pmid: 31710232 |
(b) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424.
doi: 10.1021/ja110520p pmid: 31710232 |
|
(c) Yamazaki, S.; Naito, T.; Niina, M.; Kakiuchi, K. J. Org. Chem. 2017, 82, 6748.
doi: 10.1021/acs.joc.7b00895 pmid: 31710232 |
|
(d) Jeong, H. I.; Youn, T. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2017, 38, 421.
pmid: 31710232 |
|
(e) Briones, J. F.; Basarab, G. S. Chem. Commun. 2016, 52, 8541.
doi: 10.1039/C6CC03600G pmid: 31710232 |
|
(f) Yoshida, T.; Mori, K. Chem. Commun. 2017, 53, 4319.
doi: 10.1039/C7CC01717K pmid: 31710232 |
|
(g) Yamazaki, S.; Naito, T.; Tatsumi, T.; Kakiuchi, K. Chemistry Select 2018, 3, 4505.
pmid: 31710232 |
|
(h) Yoshida, T.; Mori, K. Chem. Commun. 2018, 54, 12686.
doi: 10.1039/C8CC07009A pmid: 31710232 |
|
(i) Yokoo, K.; Mori, K. Chem. Commun. 2018, 54, 6927.
doi: 10.1039/C8CC02377H pmid: 31710232 |
|
(j) Ramakumar, K.; Maji, T.; Partridge, J. J.; Tunge, J. A. Org. Lett. 2017, 19, 4014.
doi: 10.1021/acs.orglett.7b01752 pmid: 31710232 |
|
(k) Kataoka, M.; Otawa, Y.; Ido, N.; Mori, K. Org. Lett. 2019, 21, 9334.
doi: 10.1021/acs.orglett.9b03498 pmid: 31710232 |
|
(l) Mori, K.; Isogai, R.; Kamei, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2018, 140, 6203.
doi: 10.1021/jacs.8b02761 pmid: 31710232 |
|
(m) Mori, K.; Umehara, N.; Akiyama, T. Chem. Sci. 2018, 9, 7327.
doi: 10.1039/C8SC02103A pmid: 31710232 |
|
(n) Shen, Y.-B.; Li, L.-F.; Xiao, M.-Y.; Yang, J.-M.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84, 13935.
doi: 10.1021/acs.joc.9b02110 pmid: 31710232 |
|
(o) Yokoo, K.; Mori, K. Org. Lett. 2020, 22, 244
doi: 10.1021/acs.orglett.9b04224 pmid: 31710232 |
|
(p) Paul, A.; Chandak, H. S.; Ma, L.; Seidel, D. Org. Lett. 2020, 22, 976.
doi: 10.1021/acs.orglett.9b04506 pmid: 31710232 |
|
[8] |
(a) Spadoni, G.; Bedini, A.; Lucarini, S.; Mari, M.; Caignard, D.-H.; Boutin, J. A.; Delagrange, P.; Lucini, V.; Scaglione, F.; Lodola, A.; Zanardi, F.; Pala, D.; Mor, M.; Rivara, S. J. Med. Chem. 2015, 58, 7512.
doi: 10.1021/acs.jmedchem.5b01066 |
(b) Taylor, S. N.; Marrazzo, J.; Batteiger, B. E.; Hook, E. W.; Seña, A. C.; Long, J.; Wierzbicki, M. R.; Kwak, H.; Johnson, S. M.; Lawrence, K.; Mueller, J. N. Engl. J. Med. 2018, 379, 1835.
doi: 10.1056/NEJMoa1706988 |
|
(c) Costa, M.; Dias, T. A.; Brito, A.; Proenca, F. Eur. J. Med. Chem. 2016, 123, 487.
doi: 10.1016/j.ejmech.2016.07.057 |
|
(d) Pratap, R.; Ram, V. J. Chem. Rev. 2014, 114, 10476.
doi: 10.1021/cr500075s |
|
(e) Gu, L.-J.; Han, H.-B.; Bu, Z.-W.; Wang, Q.-L. Org. Lett. 2022, 24, 2008.
doi: 10.1021/acs.orglett.2c00464 |
|
(f) Miao, H.-J.; Wang, L.-L.; Han, H.-B.; Zhao, Y.-D.; Wang, Q.-L.; Bu, Z.-W. Chem. Sci. 2020, 11, 1418.
doi: 10.1039/C9SC04880D |
|
(g) Bai, X.-G.; Miao, H.-J.; Zhao, Y.; Wang, Q.-L.; Bu, Z.-W. Org. Lett. 2020, 22, 5068.
doi: 10.1021/acs.orglett.0c01648 |
|
[9] |
Liu, S.; Zhang, W.; Qu, J.; Wang, B. Org. Chem. Front. 2018, 5, 3008.
doi: 10.1039/C8QO00875B |
[10] |
Yuan, K.; Dong, F.; Yin, X.; Li, S.-S.; Wang, L.; Xu, L. Org. Chem. Front. 2020, 7, 3868.
doi: 10.1039/D0QO00972E |
[11] |
Guo, M.; Dong, F.; Yin, X.; Xu, L.; Wang, L.; Li, S.-S. Org. Chem. Front. 2021, 8, 2224.
doi: 10.1039/D0QO01622E |
[12] |
Yang, X.; Liu, J.; Hu, F.; Sun, H.; Wang, L.; Li, S.-S. Chin. J. Org. Chem. 2021, 41, 2788 (in Chinese).
doi: 10.6023/cjoc202101024 |
(杨晓宇, 柳建林, 胡方芝, 孙红梅, 王亮, 李帅帅, 有机化学, 2021, 41, 2788.)
doi: 10.6023/cjoc202101024 |
|
[13] |
(a) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419.
doi: 10.1021/jo802325x pmid: 19053590 |
(b) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524.
doi: 10.1246/cl.2009.524 pmid: 19053590 |
|
(c) Du, Y.; Luo, S.; Gong, L. Tetrahedron Lett. 2011, 52, 7064.
doi: 10.1016/j.tetlet.2011.10.062 pmid: 19053590 |
|
(d) Shen, Y.-B.; Wang, L.-X.; Sun, Y.-M.; Dong, F.-Y.; Yu, L.; Liu, Q.; Xiao, J. J. Org. Chem. 2020, 85, 1915.
doi: 10.1021/acs.joc.9b02606 pmid: 19053590 |
|
(e) Dong, F.; Song, X.; Yin, X.; Wang, L. ChemistrySelect 2022, 7, e202203936.
pmid: 19053590 |
|
[14] |
Shi, H.; Xu, L.; Ren, D.; Wang, L.; Guo, W.; Li, S.-S. Org. Biomol. Chem. 2020, 18, 895.
doi: 10.1039/C9OB02498K |
[15] |
Chen, C.; Xu, L.; Wang, L.; Li, S.-S. Org. Biomol. Chem. 2018, 16, 7109.
doi: 10.1039/C8OB02012D |
[16] |
Liu, S.; Wang, H.; Wang, B. Org. Biomol. Chem. 2020, 18, 8839.
doi: 10.1039/D0OB01887B |
[17] |
Yang, X.; Hu, F.; Wang, L.; Xu, L.; Li, S.-S. Org. Biomol. Chem. 2020, 18, 4267.
doi: 10.1039/D0OB00521E |
[18] |
Li, S.-S.; Zhu, S.; Chen, C.; Duan, K.; Liu, Q.; Xiao, J. Org. Lett. 2019, 21, 1058.
doi: 10.1021/acs.orglett.8b04100 |
[19] |
Zhu, S.; Chen, C.; Duan, K.; Sun, Y.-M.; Li, S.-S.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84, 8440.
doi: 10.1021/acs.joc.9b00489 |
[20] |
Wang, P.-F.; Jiang, C.-H.; Wen, X.; Xu, Q.-L.; Sun, H. J. Org. Chem. 2015, 80, 1155.
doi: 10.1021/jo5026817 |
[21] |
Li, S.-S.; Lv, X.; Ren, D.; Shao, C.-L.; Liu, Q.; Xiao, J. Chem. Sci. 2018, 9, 8253.
doi: 10.1039/C8SC03339K |
[22] |
Duan, K.; Shi, H.; Wang, L.-X.; Li, S.-S.; Xu, L.; Xiao, J. Org. Chem. Front. 2020, 7, 2511.
doi: 10.1039/D0QO00658K |
[23] |
Ge, C.; Wang, L.; Hu, F.; Ding, Z.; Li, X.; Xiao, D.; Wang, J.; Li, S.-S. Org. Chem. Front. 2022, 9, 1696.
doi: 10.1039/D1QO01862K |
[1] | 刘杰, 韩峰, 李双艳, 陈天煜, 陈建辉, 徐清. 无过渡金属参与甲基杂环化合物与醇的选择性有氧烯基化反应[J]. 有机化学, 2024, 44(2): 573-583. |
[2] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[3] | 蒙玲, 汪君. 硫代黄烷酮类衍生物的合成研究进展[J]. 有机化学, 2023, 43(3): 873-891. |
[4] | 段康慧, 唐俊龙, 伍婉卿. 稠杂环化合物的合成及其抗肿瘤活性研究进展[J]. 有机化学, 2023, 43(3): 826-854. |
[5] | 郝二军, 丁笑波, 王珂新, 周红昊, 杨启亮, 石磊. 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023, 43(12): 4057-4074. |
[6] | 高秋珊, 李蒙, 伍婉卿. 过渡金属催化的异腈插入反应研究进展[J]. 有机化学, 2022, 42(9): 2659-2681. |
[7] | 于帮魁, 黄汉民. 碳-杂原子键复分解反应的研究进展[J]. 有机化学, 2022, 42(8): 2376-2389. |
[8] | 乔辉杰, 杨利婷, 陈雅, 王嘉琳, 孙武轩, 董昊博, 王云威. 温和条件下高效合成咪唑并杂环-肼类衍生物的三组分串联反应[J]. 有机化学, 2022, 42(4): 1188-1197. |
[9] | 张苗苗, 韩波, 马豪杰, 赵亮, 王记江, 张玉琦. 以氢硅烷为氢源: 铱催化N-杂环化合物的氢化[J]. 有机化学, 2022, 42(4): 1170-1178. |
[10] | 洪科苗, 黄晶晶, 姚铭瀚, 徐新芳. 氮宾/炔烃复分解串联反应研究进展[J]. 有机化学, 2022, 42(2): 344-352. |
[11] | 李红霞, 陈棚, 伍智林, 陆雨函, 彭俊梅, 陈锦杨, 何卫民. 电化学促进的五元芳香杂环与硫氰酸铵氧化交叉脱氢偶联反应[J]. 有机化学, 2022, 42(10): 3398-3404. |
[12] | 杨凯, 刘美娟, 张毓娜, 占佳琦, 邓璐璇, 郑雪洁, 周永军, 汪朝阳. 基于2-卤苯甲酰胺合成苯并杂环化合物的研究进展[J]. 有机化学, 2021, 41(6): 2175-2187. |
[13] | 刘金妮, 谢益碧, 阳青青, 黄年玉, 王龙. 基于原位捕获胺的Ugi四组分反应及其后修饰串联环化反应:“一锅法”合成六元、七元杂环化合物[J]. 有机化学, 2021, 41(6): 2374-2383. |
[14] | 贾丰成, 罗娜, 徐程, 吴安心. 靛红在苯并氮杂环类化合物的合成应用进展[J]. 有机化学, 2021, 41(4): 1527-1542. |
[15] | 许颖, 李晨, 孟建萍, 黄玉玲, 付纪源, 刘冰, 刘颖杰, 陈宁. 有机硒参与的硒环化反应研究进展[J]. 有机化学, 2021, 41(3): 1012-1030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||