有机化学 ›› 2024, Vol. 44 ›› Issue (2): 481-507.DOI: 10.6023/cjoc202307009 上一篇 下一篇
综述与进展
收稿日期:
2023-07-10
修回日期:
2023-09-14
发布日期:
2023-10-12
基金资助:
Chunyan She, Anjing Wang, Shan Liu, Wenming Shu(), Weichu Yu()
Received:
2023-07-10
Revised:
2023-09-14
Published:
2023-10-12
Contact:
Supported by:
文章分享
作为一种非常重要的有机叠氮化合物, 芳乙酰叠氮是有机合成中优良的合成子, 可广泛用于构建各种含氮化合物. 它的合成方法简单, 反应活性高, 反应位点多, 不仅可以在一个位点上发生反应, 还可以同时在两个或多个位点上发生反应, 从而使其反应类型相当丰富. 基于近年来芳乙酰叠氮在有机合成中取得了诸多进展, 主要综述了芳乙酰叠氮的各种制备方法以及按照具体的反应类型分类的研究结果, 并对代表性的例子及其反应机理进行了讨论和分析.
佘春艳, 王安静, 刘珊, 舒文明, 余维初. 芳乙酰叠氮的制备及其在有机合成中的应用进展[J]. 有机化学, 2024, 44(2): 481-507.
Chunyan She, Anjing Wang, Shan Liu, Wenming Shu, Weichu Yu. Preparation of Phenacyl Azides and Their Application Advances in Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 481-507.
[1] |
Griess P. Philos. Trans. R. Soc. Londo. 1864, 13, 377.
|
[2] |
(a) Madasu, S. B.; Vekariya, N. A.; Koteswaramma, C.; Islam, A.; Sanasi, P. D.; Korupolu, R. B. Org. Process Res. Dev. 2012, 16, 2025.
doi: 10.1021/op300179u |
(b) Pereira, G. R.; Ferreira, A. C. G.; Costa, F.; Munhoz, V.; Alvarenga, D.; Silva, B. M.; Reis, A. C. C.; Brandao, G. C. Nat. Prod. Res. 2021, 35, 3820.
doi: 10.1080/14786419.2020.1739683 |
|
[3] |
Burilov, V. A.; Fatikhova, G. A.; Mironova, D. A.; Solovieva, S. E.; Antipin, I. S. Macroheterocycle. 2015, 8, 409.
doi: 10.6060/mhc151087b |
[4] |
Zhang, Z.; Huang, B.; Qiao, G.; Zhu, L.; Xiao, F.; Chen, F.; Fu, B.; Zhang, Z. Angew. Chem.,Int. Ed. 2017, 56, 4320.
doi: 10.1002/anie.v56.15 |
[5] |
Tudisco, C.; Fragalà, M. E.; Giuffrida, A. E.; Bertani, F.; Pinalli, R.; Dalcanale, E.; Compagnini, G.; Condorelli, G. G. J. Phys. Chem. . 2016, 120, 12611.
|
[6] |
(a) Tanimoto, H.; Kakiuchi, K. Nat. Prod. Commun. 2013, 8, 1021.
pmid: 23980438 |
(b) Huang, D.; Yan, G. Adv. Synth. Catal. 2017, 359, 1600.
doi: 10.1002/adsc.v359.10 pmid: 23980438 |
|
[7] |
Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. 2005, 117, 5320.
doi: 10.1002/ange.v117:33 |
[8] |
Patonay, T.; Konya, K.; Juhasz-Toth, E. Chem. Soc. Rev. 2011, 40, 2797.
doi: 10.1039/c0cs00101e pmid: 21331407 |
[9] |
Faiz, S.; Zahoor, A.; Rasool, N.; Yousaf, M.; Mansha, A.; Zia-Ul-Haq, M.; Jaafar, H. Molecule. 2015, 20, 14699.
doi: 10.3390/molecules200814699 |
[10] |
Borkotoky, L.; Maurya, R. A. Asian J. Org. Chem. 2022, 11, e202200254.
|
[11] |
(a) Ackrell, J.; Muchowski, J. M.; Galeazzi, E.; Guzman, A. J. Org. Chem. 1986, 51, 3374.
doi: 10.1021/jo00367a026 |
(b) Jia, F.-C.; Luo, N.; Xu C. Wu A.-X. Chin. J. Org. Chem. 2021, 41, 1527 (in Chinese).
|
|
(贾丰成, 罗娜, 徐程, 吴安心, 有机化学. 2021, 41, 1527.)
doi: 10.6023/cjoc202007034 |
|
[12] |
(a) Vitale, P.; Cicco, L.; Messa, F.; Perna, F. M.; Salomone, A.; Capriati, V. Eur. J. Org. Chem. 2019, 2019, 5557.
doi: 10.1002/ejoc.201900722 |
(b) Klahn, P.; Erhardt, H.; Kotthaus, A.; Kirsch, S. F. Angew. Chem., nt. Ed. 2014, 53, 7913.
|
|
(c) Uyanik, M.; Sahara, N.; Tsukahara, M.; Hattori, Y.; Ishihara, K. Angew. Chem., nt. Ed. 2020, 59, 17110.
|
|
[13] |
Patonay, T.; Hoffman, R. V. J. Org. Chem. 1994, 59, 2902.
doi: 10.1021/jo00089a043 |
[14] |
(a) Hassner, A.; Stern, M. Angew. Chem., nt. Ed. Engl. 1986, 25, 478.
|
(b) Yusubov, M. S.; Funk, T. V.; Yusubova, R. Y.; Zholobova, G.; Kirschning, A.; Park, J. Y.; Chi, K.-W. Synth. Commun. 2009, 39, 3772.
doi: 10.1080/00397910902838870 |
|
[15] |
(a) Lourenço, N. M. T.; Afonso, C. A. M. Tetrahedro. 2003, 59, 789.
|
(b) Li, J.; Cao, J.-J.; Wei, J.-F.; Shi, X.-Y.; Zhang, L.-H.; Feng, J.-J.; Chen, Z.-G. Eur. J. Org. Chem. 2011, 2011, 229.
doi: 10.1002/ejoc.v2011.2 |
|
[16] |
Sayyahi, S.; Saghanezhad, J. Chin. Chem. Lett. 2011, 22, 300.
doi: 10.1016/j.cclet.2010.10.009 |
[17] |
Kiasat, A. R.; Zarinderakht, N.; Sayyahi, S. Chin. J. Chem. 2012, 30, 699.
doi: 10.1002/cjoc.v30.3 |
[18] |
Lee, J. C.; Kim, S.; Shin, W. C. Synth. Commun. 2000, 30, 4271.
doi: 10.1080/00397910008087049 |
[19] |
Kumar, D.; Sundaree, S.; Rao, V. S. Synth. Commun. 2006, 36, 1893.
doi: 10.1080/00397910600602644 |
[20] |
Telvekar, V. N.; Patile, H. V. Synth. Commun. 2010, 41, 131.
doi: 10.1080/00397910903531888 |
[21] |
Prakash, O.; Pannu, K.; Prakash, R.; Batra, A. Molecule. 2006, 11, 523.
doi: 10.3390/11070523 |
[22] |
Wang, H.-M.; Hou, R.-S.; Wu, J.-L.; Chen, L.-C. J. Chin. Chem. Soc. 2007, 54, 1333.
doi: 10.1002/jccs.v54.5 |
[23] |
Chang, Y.-L.; Chung, C.-L.; Wu, F.-W.; Wang, H.-M.; Hou, R.-S.; Kang, I.-J.; Chen, L.-C. J. Chin. Chem. Soc. 2010, 57, 149.
doi: 10.1002/jccs.v57.2 |
[24] |
Zheng, Z.-J.; Yu, T.-Y.; Xu, P.-F.; Wei, H. Asian J. Org. Chem. 2018, 7, 1579.
doi: 10.1002/ajoc.v7.8 |
[25] |
Yadav, J. S.; Subba Reddy, B. V.; Srinivas M. Chem. Lett. 2004, 33, 882.
doi: 10.1246/cl.2004.882 |
[26] |
Ehrenfreund, J.; Zbiral, E. Tetrahedro. 1972, 28, 1697.
|
[27] |
(a) Nair, V.; Nair, L. G.; George, T. G.; Augustine, A. Tetrahedro. 2000, 56, 7607.
doi: 10.1016/S0040-4020(00)00675-X |
(b) Keshavarz, M.; Badri, R. Mol. Diversit. 2011, 15, 957.
|
|
[28] |
Badri, R.; Gorjizadeh, M. Synth. Commun. 2012, 42, 2058.
doi: 10.1080/00397911.2010.551701 |
[29] |
Hossain, A.; Vidyasagar, A.; Eichinger, C.; Lankes, C.; Phan, J.; Rehbein, J.; Reiser, O. Angew. Chem., nt. Ed. 2018, 57, 8288.
|
[30] |
(a) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20, 3197.
doi: 10.1039/C8GC01245H |
(b) Gong, X.; Zhu, C.; Ye, L.-W. Org. Biomol. Chem. 2020, 18, 1843.
doi: 10.1039/C9OB02754H |
|
[31] |
Shee, M.; Shah, S. S.; Singh, N. D. P. Chem.-Eur. J. 2020, 26, 14070.
doi: 10.1002/chem.v26.62 |
[32] |
(a) Ye, Z.; Zhu, R.; Wang, F.; Jiang, H.; Zhang, F. Org. Lett. 2021, 23, 8240.
doi: 10.1021/acs.orglett.1c02991 |
(b) Zhu, Y.; Jiang, C.; Li, H.; Liu, P.; Sun, P. J. Org. Chem. 2022, 87, 11031.
doi: 10.1021/acs.joc.2c01293 |
|
[33] |
Hussain, M. I.; Feng, Y.; Hu, L.; Deng, Q.; Zhang, X.; Xiong, Y. J. Org. Chem. 2018, 83, 7852.
doi: 10.1021/acs.joc.8b00729 |
[34] |
Vita, M. V.; Waser, J. Org. Lett. 2013, 15, 3246.
doi: 10.1021/ol401229v |
[35] |
More, A. A.; Pathe, G. K.; Parida, K. N.; Maksymenko, S.; Lipisa, Y. B.; Szpilman, A. M. J. Org. Chem. 2018, 83, 2442.
doi: 10.1021/acs.joc.7b03058 |
[36] |
Sheng, H.; Liu, Q.; Chen, F.; Wang, Z.; Chen, X. Chin. Chem. Lett. 2022, 33, 4298.
doi: 10.1016/j.cclet.2022.01.028 |
[37] |
Su, Y.; Petersen, J. L.; Gregg, T. L.; Shi, X. Org. Lett. 2015, 17, 1208.
doi: 10.1021/acs.orglett.5b00156 |
[38] |
Yang, B.; Lu, Z. ACS Catal. 2017, 7, 8362.
doi: 10.1021/acscatal.7b02892 |
[39] |
Liardo, E.; Ríos-Lombardía, N.; Morís, F.; González-Sabín, J.; Rebolledo, F. Eur. J. Org. Chem. 2018, 2018, 3031.
doi: 10.1002/ejoc.v2018.23 |
[40] |
Boyer J. H. J. Am. Chem. Soc. 1951, 73, 5865.
doi: 10.1021/ja01156a507 |
[41] |
Boyer, J. H.; Straw, D. J. Am. Chem. Soc. 1953, 75, 1642.
doi: 10.1021/ja01103a036 |
[42] |
Schrittwieser, J. H.; Coccia, F.; Kara, S.; Grischek, B.; Kroutil, W.; d'Alessandro, N.; Hollmann, F. Green Chem. 2013, 15, 3318.
doi: 10.1039/c3gc41666f |
[43] |
Bretschneider, H.; Hörmann, H. Monatsh. Chem. 1953, 84, 1021.
doi: 10.1007/BF00899309 |
[44] |
Patonay, T.; Micskei, K.; Juhász-Tóth, É.; Fekete, S.; Pardi-Tóth, V. C. ARKIVO. 2009, 2009, 270.
doi: 10.3998/ark.5550190.0010.627 |
[45] |
Knittel D. Z. Naturforsch. 1983, 38b, 930.
|
[46] |
Takeuchi, H.; Yanagida, S.; Ozaki, T.; Hagiwara, S.; Eguchi, S. J. Org. Chem. 1989, 54, 431.
doi: 10.1021/jo00263a033 |
[47] |
(a) Mandel, S. M.; Krause Bauer, J. A.; Gudmundsdottir, A. D. Org. Lett. 2001, 3, 523.
pmid: 28848985 |
(b) Singh, P. N. D.; Mandel, S. M.; Robinson, R. M.; Zhu, Z.; Franz, R.; Ault, B. S.; Gudmundsdóttir, A. D. J. Org. Chem. 2003, 68, 7951.
doi: 10.1021/jo034674e pmid: 28848985 |
|
(c) Muthukrishnan, S.; Mandel, S. M.; Hackett, J. C.; Singh, P. N. D.; Hadad, C. M.; Krause, J. A.; Gudmundsdóttir, A. D. J. Org. Chem. 2007, 72, 2757.
doi: 10.1021/jo062160k pmid: 28848985 |
|
(d) Sarkar, S. K.; Gatlin, D. M.; Das, A.; Loftin, B.; Krause, J. A.; Abe, M.; Gudmundsdottir, A. D. Org. Biomol. Chem. 2017, 15, 7380.
doi: 10.1039/c7ob01731f pmid: 28848985 |
|
[48] |
Carmeli, M.; Rozen, S. J. Org. Chem. 2006, 71, 4585.
pmid: 16749792 |
[49] |
Myers, E. L.; Raines, R. T. Angew. Chem., nt. Ed. 2009, 48, 2359.
|
[50] |
Yokoi, T.; Ueda, T.; Tanimoto, H.; Morimoto, T.; Kakiuchi, K. Chem. Commun. 2019, 55, 1891.
doi: 10.1039/C8CC09415B |
[51] |
Kholod, I.; Vallat, O.; Buciumas, A.-M.; Neels, A.; Neier, R. Eur. J. Org. Chem. 2014, 2014, 7865.
doi: 10.1002/ejoc.v2014.35 |
[52] |
Ren, H.; Dunet, G.; Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2007, 129, 5376.
doi: 10.1021/ja071380s |
[53] |
(a) Reddy, M. A.; Bhanumathi, N.; Rao, K. R. Chem. Commun. 2001, 19, 1974.
|
(b) Kamal, A.; Shaik, A. A.; Sandbhor, M.; Malik, M. S. Tetrahedron: Asymmetry 2004, 15, 935.
|
|
(c) Rocha, L. C.; Seleghim, M. H. R.; Comasseto, J. V.; Sette, L. D.; Porto, A. L. M. Mar. Biotechnol. 2015, 17, 736.
doi: 10.1007/s10126-015-9644-x |
|
[54] |
Del Vecchio, A.; Talbot, A.; Caillé, F.; Chevalier, A.; Sallustrau, A.; Loreau, O.; Destro, G.; Taran, F.; Audisio, D. Chem. Commun. 2020, 56, 11677.
doi: 10.1039/D0CC05031H |
[55] |
Reddy, C. N.; Krishna, N. H.; Reddy, V. G.; Alarifi, A.; Kamal, A. Asian J. Org. Chem. 2017, 6, 1498.
doi: 10.1002/ajoc.v6.10 |
[56] |
Yu, P.; Wang, Y.; Zeng, Z.; Chen, Y. J. Org. Chem. 2019, 84, 14883.
doi: 10.1021/acs.joc.9b01777 |
[57] |
Wang, A.-J.; She, C.-Y.; Zhang, Y.-D.; Zhao, L.-H.; Shu, W.-M.; Yu, W.-C. J. Org. Chem. 2022, 87, 16099.
doi: 10.1021/acs.joc.2c01814 |
[58] |
Peng, Y.-Y.; Zhuo, B.-Y.; Wang, Z.-Q.; Liu, B.; Zhang, F.-X.; Yu, J.-X.; Wang, C.-Y.; Xu, Z.-F.; Li, J.-H. Org. Chem. Front. 2022, 9, 5858.
doi: 10.1039/D2QO01226J |
[59] |
Knittel, D.; Hemetsberger, H.; Weidmann, H. Monatsh. Chem. 1970, 101, 157.
doi: 10.1007/BF00907535 |
[60] |
Hemetsberger, H.; Knittel, D. Monatsh. Chem. 1972, 103, 205.
doi: 10.1007/BF00912945 |
[61] |
(a) Patonay, T.; Juhász-Tóth, É.; Bényei, A. Eur. J. Org. Chem. 2002, 2002, 285.
doi: 10.1002/1099-0690(20021)2002:2【-逻*辑*与-】amp;lt;285::AID-EJOC285【-逻*辑*与-】amp;gt;3.0.CO;2-J |
(b) Martinez-Castaneda, A.; Kedziora, K.; Lavandera, I.; Rodriguez-Solla, H.; Concellon, C.; del Amo, V. Chem. Commun. 2014, 50, 2598.
doi: 10.1039/c3cc49371g |
|
(c) Okumuş, S.; Tanyeli, C.; Demir, A. S. Tetrahedron Lett. 2014, 55, 4302.
doi: 10.1016/j.tetlet.2014.06.018 |
|
(d) Ding, P.-G.; Zhou, F.; Wang, X.; Zhao, Q.-H.; Yu, J.-S.; Zhou, J. Chem. Sci. 2020, 11, 3852.
doi: 10.1039/D0SC00475H |
|
[62] |
Juhász-Tótha, É.; Patonay, T. Eur. J. Org. Chem. 2002, 3055.
|
[63] |
Patonay, T.; Jekő, J.; Juhász-Tóth, É. Eur. J. Org. Chem. 2008, 2008, 1441.
doi: 10.1002/ejoc.v2008:8 |
[64] |
Babu, T. H.; Kamalraja, J.; Muralidharan, D.; Perumal, P. T. Tetrahedron Lett. 2011, 52, 4093.
doi: 10.1016/j.tetlet.2011.05.101 |
[65] |
Marco, J.; Martínez-Grau, A.; Martín, N.; Seoane, C. Tetrahedron Lett. 1995, 36, 5393.
doi: 10.1016/00404-0399(50)0988O- |
[66] |
Kamalraja, J.; Babu, T. H.; Muralidharan, D.; Perumal, P. T. Synlet. 2012, 23, 1950.
doi: 10.1055/s-0032-1316583 |
[67] |
Kumar, N. P.; Vanjari, Y.; Thatikonda, S.; Pooladanda, V.; Sharma, P.; Sridhar, B.; Godugu, C.; Kamal, A.; Shankaraiah, N. Bioorg. Med. Chem. Lett. 2018, 28, 3564.
doi: 10.1016/j.bmcl.2018.07.038 |
[68] |
Chimaladenne, V.; Manda, R.; Gudipally, A. R.; Valluru, K. R.; Brahman, P. K.; Somarapu, V. L. Synth. Commun. 2020, 50, 2941.
doi: 10.1080/00397911.2020.1787447 |
[69] |
Kamalraja, J.; Sowndarya, R.; Perumal, P. T. Synlet. 2014, 25, 2208.
doi: 10.1055/s-00000083 |
[70] |
Dhanasekar, E.; Kannan, T.; Venkatesan, R.; Perumal, P. T.; Kamalraja, J. J. Org. Chem. 2020, 85, 9631.
doi: 10.1021/acs.joc.0c00978 pmid: 32628472 |
[71] |
Borkotoky, L.; Borra, S.; Maurya, R. A. Eur. J. Org. Chem. 2022, 2022, e202101237.
|
[72] |
Smith, C. D.; Baxendale, I. R.; Lanners, S.; Hayward, J. J.; Smith, S. C.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1559.
doi: 10.1039/b702995k |
[73] |
Kumar, D.; Patel, G.; Reddy, V. B. Synlet. 2009, 399.
|
[74] |
(a) Shao, C.; Cheng, G.; Su, D.; Xu, J.; Wang, X.; Hu, Y. Adv. Synth. Catal. 2010, 352, 1587.
doi: 10.1002/adsc.v352:10 |
(b) Shao, C.; Wang, X.; Xu, J.; Zhao, J.; Zhang, Q.; Hu, Y. J. Org. Chem. 2010, 75, 7002.
doi: 10.1021/jo101495k |
|
(c) Shao, C.; Zhu, R.; Luo, S.; Zhang, Q.; Wang, X.; Hu, Y. Tetrahedron Lett. 2011, 52, 3782.
doi: 10.1016/j.tetlet.2011.05.061 |
|
[75] |
(a) Alvarenga, N.; Porto, A. L. M. Biocatal. Biotransform. 2017, 35, 388.
doi: 10.1080/10242422.2017.1352585 |
(b) Cha, H.; Lee, K.; Chi, D. Y. Tetrahedro. 2017, 73, 2878.
doi: 10.1016/j.tet.2017.03.068 |
|
[76] |
Wang, K.; Bi, X.; Xing, S.; Liao, P.; Fang, Z.; Meng, X.; Zhang, Q.; Liu, Q.; Ji, Y. Green Chem. 2011, 13, 562.
doi: 10.1039/c0gc00848f |
[77] |
Ötvös, S. B.; Mándity, I. M.; Kiss, L.; Fülöp, F. Chem.-Asian J. 2013, 8, 800.
doi: 10.1002/asia.v8.4 |
[78] |
Zheng, L.; Wang, Y.; Meng, X.; Chen, Y. Catal. Commun. 2021, 148, 106165.
doi: 10.1016/j.catcom.2020.106165 |
[79] |
Kotovshchikov, Y. N.; Latyshev, G. V.; Beletskaya, I. P.; Lukashev, N. V. Synthesi. 2018, 50, 1926.
doi: 10.1055/s-0036-1591896 |
[80] |
Shanmugavelan, P.; Nagarajan, S.; Sathishkumar, M.; Ponnuswamy, A.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2011, 21, 7273.
doi: 10.1016/j.bmcl.2011.10.048 pmid: 22061642 |
[81] |
Butler, C. R.; Bendesky, J.; Schoffstall, A. M. Molecule. 2021, 26, 5589.
doi: 10.3390/molecules26185589 |
[82] |
Brisbois, R. G.; Bergan, A. M.; Ellison, A. J.; Griffin, P. Y.; Hackbarth, K. C.; Larson, S. R. Tetrahedron Lett. 2013, 54, 272.
doi: 10.1016/j.tetlet.2012.11.019 |
[83] |
Maurya, R. A.; Adiyala, P. R.; Chandrasekhar, D.; Reddy, C. N.; Kapure, J. S.; Kamal, A. ACS Comb. Sci. 2014, 16, 466.
doi: 10.1021/co500070e |
[84] |
Gour, J.; Gatadi, S.; Pooladanda, V.; Ghouse, S. M.; Malasala, S.; Madhavi, Y. V.; Godugu, C.; Nanduri, S. Bioorg. Chem. 2019, 93, 103306.
doi: 10.1016/j.bioorg.2019.103306 |
[85] |
Frøyen P. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 60, 81.
doi: 10.1080/10426509108233928 |
[86] |
Molina, P.; Fresneda, P. M.; Almendros, P. Synthesi. 1993, 54.
|
[87] |
(a) Dhar, T. G. M.; Guo, J.; Shen, Z.; Pitts, W. J.; Gu, H. H.; Chen, B.-C.; Zhao, R.; Bednarz, M. S.; Iwanowicz, E. J. Org. Lett. 2002, 2091.
|
(b) Bursavich, M. G.; Parker, D. P.; Willardsen, J. A.; Gao, Z.-H.; Davis, T.; Ostanin, K.; Robinson, R.; Peterson, A.; Cimbora, D. M.; Zhu, J.-F.; Richards, B. Biorg. Med. Chem. Lett. 2010, 20, 1677.
doi: 10.1016/j.bmcl.2010.01.058 |
|
(c) Suh, J. H.; Yum, E. K.; Cho, Y. S. Chem. Pharm. Bull. 2015, 63, 573.
doi: 10.1248/cpb.c15-00033 |
|
[88] |
Klug, T.; Cronin, A.; O'Brien, E.; Schioldager, R.; Johnson, H.; Gleason, C.; Schmid, C.; Soderberg, N.; Manjunath, A.; Liyanage, D.; Lazaro, H.; Kimball, J. J.; Eagon, S. Tetrahedron Lett. 2022, 88, 153555.
doi: 10.1016/j.tetlet.2021.153555 |
[89] |
Oka, Y.; Yabuuchi, T.; Sekiguchi, Y. Heterocycle. 2013, 87, 1881.
doi: 10.3987/COM-13-12778 |
[90] |
Jadala, C.; Prasad, B.; Prasanthi, A. V. G.; Shankaraiah, N.; Kamal, A. RSC Adv. 2019, 9, 30659.
doi: 10.1039/C9RA06778G |
[91] |
Boyer, J. H.; Straw, D. J. Am. Chem. Soc. 1952, 74, 4506.
doi: 10.1021/ja01138a011 |
[92] |
Batanero, B.; Escudero, J.; Barba, F. Org. Lett. 1999, 1521.
|
[93] |
Nakajima, M.; Loeschorn, C. A.; Cimbrelo, W. E.; Anselme, J. P. Org. Prep. Proced. Int. 1980, 12, 265.
doi: 10.1080/00304948009356477 |
[94] |
Benati, L.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S.; Zanardi, G.; Calestani, G. Tetrahedro. 2002, 58, 3485.
doi: 10.1016/S0040-4020(02)00302-2 |
[95] |
(a) Fan, X.; Zhang, Y. Tetrahedron Lett. 2002, 43, 1863.
|
(b) Fan, X.; Zhang, X.; Zhang, Y. J. Chem. Res. 2005, 750.
|
|
[96] |
Chen, J.; Chen, W.; Yu, Y.; Zhang, G. Tetrahedron Lett. 2013, 54, 1572.
doi: 10.1016/j.tetlet.2013.01.042 |
[97] |
Vitale, P.; Cicco, L.; Cellamare, I.; Perna, F. M.; Salomone, A.; Capriati, V. Beilstein J. Org. Chem. 2020, 16, 1915.
doi: 10.3762/bjoc.16.158 pmid: 32802208 |
[98] |
(a) Majo, V. J.; Perumal, P. T. Tetrahedron Lett. 1997, 38, 6889.
doi: 10.1016/S0040-4039(97)01587-6 |
(b) Majo, V. J.; Perumal, P. T. J. Org. Chem. 1998, 63, 7136.
doi: 10.1021/jo971745z |
|
[99] |
Reddy, D. S.; Rajale, T. V.; Shivakumar, K.; Iqbal, J. Tetrahedron Lett. 2005, 46, 979.
|
[100] |
Chen, R. E.; Zhou, X. H.; Zhong, W. H.; Su, W. K. Org. Prep. Proced. Int. 2008, 40, 579.
doi: 10.1080/00304940809458125 |
[101] |
Shah, S. R.; Navathe, S. S.; Dikundwar, A. G.; Guru Row, T. N.; Vasella, A. T. Eur. J. Org. Chem. 2013, 2013, 264.
doi: 10.1002/ejoc.v2013.2 |
[102] |
Zhang, Y.; Luo, M.; Li, Y.; Wang, H.; Ren, X.; Qi, C. Mol. Diversit. 2018, 22, 183.
|
[103] |
Ren, M.-T.; Li, M.; Wang, A.-J.; Gao, J.; Zhang, X.-X.; Shu, W.-M. Eur. J. Org. Chem. 2020, 2020, 2233.
doi: 10.1002/ejoc.v2020.15 |
[104] |
Zhang, H.; Riomet, M.; Roller, A.; Maulide, N. Org. Lett. 2020, 22, 2376.
doi: 10.1021/acs.orglett.0c00571 |
[105] |
Belei, D.; Bicu, E.; Jones, P. G.; Birsa, M. L. Synlet. 2010, 931.
|
[106] |
Chen, J.; Ni, H.; Chen, W.; Zhang, G.; Yu, Y. Tetrahedro. 2013, 69, 8069.
doi: 10.1016/j.tet.2013.06.082 |
[107] |
Kamal, A.; Reddy, C. N.; Satyaveni, M.; Chandrasekhar, D.; Nanubolu, J. B.; Singarapu, K. K.; Maurya, R. A. Chem. Commun. 2015, 51, 10475.
doi: 10.1039/C5CC00815H |
[108] |
Reddy, C. N.; Sathish, M.; Adhikary, S.; Nanubolu, J. B.; Alarifi, A.; Maurya, R. A.; Kamal, A. Org. Biomol. Chem. 2017, 15, 2730.
doi: 10.1039/C7OB00299H |
[109] |
Visweswara Sastry, K. N.; Prasad, B.; Nagaraju, B.; Ganga Reddy, V.; Alarifi, A.; Babu, B. N.; Kamal, A. ChemistrySelec. 2017, 2, 5378.
doi: 10.1002/slct.201700889 |
[110] |
Prasad, B.; Phanindrudu, M.; Nanubolu, J. B.; Kamal, A.; Tiwari, D. K. Chem. Commun. 2021, 57, 9542.
doi: 10.1039/D1CC02884G |
[111] |
Prasad, B.; Phanindrudu, M.; Tiwari, D. K.; Kamal, A. J. Org. Chem. 2019, 84, 12334.
doi: 10.1021/acs.joc.9b01534 |
[112] |
Dagar, A.; Seo, Y.; Namkung, W.; Kim, I. Org. Biomol. Chem. 2020, 18, 3324.
doi: 10.1039/D0OB00444H |
[113] |
Liu, S.; Wang, A. J.; Li, M.; Zhang, J.; Yin, G. D.; Shu, W. M.; Yu, W. C. J. Org. Chem. 2022, 87, 11253.
doi: 10.1021/acs.joc.2c01214 |
[1] | 宋晓, 卿晶, 黎君, 贾雪雷, 吴福松, 黄均荣, 金剑, 游恒志. 铜催化格氏试剂的不对称烯丙基烷基化连续流反应[J]. 有机化学, 2023, 43(9): 3174-3179. |
[2] | 孙雨人, 刘建东, 林泉, 姚建, 童玮琦, 钱群. 镍催化的卤代糖苷和卤代芳烃通过还原偶联制备芳香碳糖苷类化合物的简易方法[J]. 有机化学, 2021, 41(4): 1551-1562. |
[3] | 陈鑫, 陈春霞, 彭进松. 纤维素及其衍生物负载铜催化有机反应的研究进展[J]. 有机化学, 2021, 41(4): 1319-1336. |
[4] | 王亚飞, 张涛, 郭旭东, 胡睿, 王双青, 杨国强. 快速溶剂交换法制备疏水性二氧化硅气凝胶及其负载有机荧光探针的应用研究[J]. 有机化学, 2019, 39(2): 550-554. |
[5] | 郑婷婷, 王洋洋, 杨在孝, 孙宏建, 李晓燕. 铁氢配合物对一级酰胺脱水成腈的催化作用[J]. 有机化学, 2019, 39(10): 2941-2945. |
[6] | 刘宝友, 张佩文. 离子液体的进展——绿色制备及在环境修复中的应用研究[J]. 有机化学, 2018, 38(12): 3176-3188. |
[7] | 徐光利, 刚芳莉, 董涛生, 傅颖, 杜正银. 金属有机框架物催化有机反应综述[J]. 有机化学, 2016, 36(7): 1513-1527. |
[8] | 周文俊, 王丹, 张霞忠, 曾彬. 一种新型竹纤维负载钯催化剂的制备及催化性能[J]. 有机化学, 2016, 36(6): 1412-1418. |
[9] | 毛雨, 田晒校, 张为, 徐广宇. Vinamidinium盐的制备及其应用[J]. 有机化学, 2016, 36(4): 700-710. |
[10] | 张磊, 王晓燕, 习晓娟, 刘蒲. 溴化甲基咪唑键联壳聚糖的制备及其催化N-羟烷基化研究[J]. 有机化学, 2015, 35(7): 1475-1483. |
[11] | 马丛明, 侯可辉, 刘祖亮, 姚其正. 一种有效制备2-氨基-3,5-二硝基-6-氯吡啶及其衍生物的方法[J]. 有机化学, 2014, 34(3): 584-588. |
[12] | 李清霞, 王鹏, 娄忠良, 刘越, 孟子晖, 徐志斌, 薛敏. 1,3,5,7-四乙酰基-1,3,5,7-四氮杂环辛烷合成反应中间体的制备分离[J]. 有机化学, 2012, 32(01): 165-168. |
[13] | 李记太, 孟献涛, 刘磊, 陈国峰. 硅胶硫酸催化肟转化为羰基化合物的有效方法[J]. 有机化学, 2011, 31(05): 733-736. |
[14] | 张帆, 李云庆, 王家喜. 含氢硅油-三氯化钌催化酰胺的还原反应研究[J]. 有机化学, 2010, 30(12): 1921-1924. |
[15] | 卢定强*,a,b; 涂清波a; 凌岫泉a ; 王 俊a ; 李衍亮a; 党安旺a; 任 伟c; 韦 萍c . 手性环氧氯丙烷的制备及其药物应用[J]. 有机化学, 2009, 29(08): 1209-1216. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||