综述与进展

铜催化不对称烯丙基烷基化反应的研究进展

  • 崔朋雷 ,
  • 刘海燕 ,
  • 张冬暖 ,
  • 王春
展开
  • 河北农业大学理学院 保定 071001

收稿日期: 2011-10-07

  修回日期: 2012-01-04

  网络出版日期: 2012-03-08

Progress in Copper-Catalyzed Asymmetric Allylic Alkylation Reaction

  • Cui Penglei ,
  • Liu Haiyan ,
  • Zhang Dongnuan ,
  • Wang Chun
Expand
  • College of Science, Agricultural University of Hebei, Baoding 071001

Received date: 2011-10-07

  Revised date: 2012-01-04

  Online published: 2012-03-08

摘要

铜催化不对称烯丙基烷基化反应是一种重要的合成手性化合物的方法, 综述了铜催化不对称烯丙基烷基化反应的最新研究进展, 重点讨论了烯丙基衍生物结构、手性配体结构及亲核试剂类型等因素对该类型反应的影响.

本文引用格式

崔朋雷 , 刘海燕 , 张冬暖 , 王春 . 铜催化不对称烯丙基烷基化反应的研究进展[J]. 有机化学, 2012 , 32(08) : 1401 -1409 . DOI: 10.6023/cjoc1110071

Abstract

Copper-catalyzed asymmetric allylic alkylation reaction is one of the most important methods for preparing chiral compounds. The recent progress of copper-catalyzed asymmetric allylic alkylation reaction is reviewed. Great attention is paid to the influences caused by the structure of allylic derivatives and chiral ligands and the type of nucleophiles on this kind of allylic alkylation reaction.

参考文献

[1] Takeuchi, R. Polyhedron 1999, 19, 557.

[2] Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.

[3] Gunasekara, N. G.; Noble, S.; Benfield, P. Drugs 1998, 55, 85.

[4] Miyabe, H.; Takemoto, Y. Synlett 2005, 1641.

[5] Trost, B. M. J. Org. Chem. 2004, 69, 5813.

[6] Wu, Y.-J.; Yang, D.-Q.; Long, Y.-H. Chin. J. Org. Chem. 2009, 29, 1522 (in Chinese). (吴钰娟, 杨定乔, 龙玉华, 有机化学, 2009, 29, 1522.)

[7] Wang, Y.-F.; Zeng, J.-H.; Cui, X.-R. Chin. J. Org. Chem. 2010, 30, 181 (in Chinese). (王晔峰, 曾京辉, 崔晓瑞, 有机化学, 2010, 30, 181.)

[8] Xu, H.-J.; Man, Q.-S.; Lin, Y.-C.; Li, Y.-Y.; Feng, Y.-S. Chin. J. Org. Chem. 2010, 30, 9 (in Chinese). (许华建, 蔄秋石, 林义成, 李源源, 冯乙巳, 有机化学, 2010, 30, 9.)

[9] Qin, Y.-C.; Peng, Q. Chin. J. Org. Chem. 2011, 31, 1169 (in Chinese). (秦元成, 彭强, 有机化学, 2011, 31, 1169.)

[10] Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435.

[11] Kar, A.; Argade, N. P. Synthesis 2005, 2995.

[12] Goering, H. L.; Singleton Jr, V. D. J. Am. Chem. Soc. 1976, 98, 7854.

[13] Goering, H. L.; Kantar, S. S. J. Org. Chem. 1984, 49, 422.

[14] Goering, H. L.; Singleton Jr, V. D. J. Am. Chem. Soc. 1983, 48, 1531.

[15] Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3063.

[16] Bertz, S. H.; Dabbagh, G.; Mujsce, A. M. J. Am. Chem. Soc. 1991, 113, 631.

[17] Berlan, J.; Battioni, J. P.; Koosha, K. J. Organomet. Chem. 1978, 152, 359.

[18] Lipshutz in, B. H. Organomet. Synth. 1994, 4, 283.

[19] Persson, E. S. M.; van Klaveren, M.; Grove, D. M.; B?ckvall, J. E.; van Koten, G. Chem. Eur. J. 1995, 1, 351.

[20] Karlstr?m, A. S. E.; B?ckvall, J. E. Chem. Eur. J. 2001, 7, 1981.

[21] van klaveren, M.; Persson, E. S. M.; del Villar, A.; Grove, D. M.; B?ckvall, J.-E.; van Koten, G. Tetrahedron Lett. 1995, 36, 3059.

[22] Meuzwlaar, G. J.; Karlstrom, A. S. E.; Van Klaveren, M.; Persson, E. S. M.; Del Villar, A.; van Koten, G.; B?ckvall, J. E. Tetrahedron 2000, 56, 2895.

[23] Karlstr?m, A. S. E.; Huerta, F. F.; Meuzelaar, G. J. B?ckvall, J. E. Synlett 2001, 923.

[24] Alexakis, A.; Malan, C.; Lea, L.; Benhaim, C.; Fournioux, X. Synlett 2001, 927.

[25] Alexakis, A.; Croset, K. Org. Lett. 2002, 4, 4147.

[26] Tissot-Croset, K.; Polet, D.; Alexakis, A. Angew. Chem., Int. Ed. 2004, 43, 2426.

[27] Tissot-Croset, K.; Polet, D.; Gille, S.; Hawner, C.; Alexakis, A. Synthesis 2004, 2586.

[28] Tissot-Croset, K.; Alexakis, A. Tetrahedron Lett. 2004, 45, 7375.

[29] Falciola, C. A.; Tissot-Croset, K.; Alexakis, A. Angew. Chem., Int. Ed. 2006, 45, 5995.

[30] Tominaga, S.; Oi, Y.; Kato, T.; An, D. K.; Okamato, S. Tetrahedron Lett. 2004, 45, 5585.

[31] Okamato, S.; Tominaga, S.; Saino, N.; Kase, K.; Shimoda, K. J. Organomet. Chem. 2005, 690, 6001.

[32] Lopez, F.; Van Zijl, A. W.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2006, 409.

[33] Van Zijl, A. W.; Lopez, F.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2007, 72, 2558.

[34] Geurts, K. Fletcher, S. P.; Feringa, B. L. J. Am. Chem. Soc. 2006. 128, 15572.

[35] Teichert, J. F.; Zhang, S. Y.; van Zijl, A. W.; Slaa, J. W.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2010, 12, 4658.

[36] Selim, K. B.; Matsumoto, Y.; Yamada, K.; Tomioka, K. Angew. Chem., Int. Ed. 2009, 48, 8733.

[37] Mastral, M. F.; Horst, B.; Minnaard, A. J.; Feringa, B. L. Chem. Commun. 2011, 47, 5843.

[38] Dubner, F.; Knochel, P. Angew. Chem., Int. Ed. 1998, 38, 379.

[39] Dubner, F.; Knochel, P. Tetrahedron Lett. 2000, 41, 9233.

[40] Malda, H.; van Zijl, A. W.; Arnold, L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169.

[41] van Zijl, A. W.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Adv. Synth. Catal. 2004, 346, 413.

[42] Borner, C.; Goldsmith, P. J.; Woodward, S.; Gimeno, J.; Gladiali, S.; Ramazzotti, D. Chem. Commun. 2000, 2433.

[43] Bennet, S. M. W.; Brown, S. M.; Cunningham, A.; Dennis, M. R.; Muxworthy, J. P.; Oakley, M. A.; Woodward, S. Tetrahedron 2000, 56, 2847.

[44] Goldsmith, P. J.; Teat, S. J.; Woodward, S. Angew. Chem., Int. Ed. 2005, 44, 2235.

[45] Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2001, 40, 1456.

[46] Murphy, K. E.; Hoveyda, A. H.; J. Am. Chem. Soc. 2003. 125, 4690.

[47] Hoveyda, A. H.; Hird, A. W.; Kacprzynski, M. A. Chem. Commun. 2004, 1799.

[48] Kacprzynski, M. A. Hoveyda, A. H. J. Am. Chem. Soc. 2004. 126, 10676.

[49] Piarulli, U.; Daubos, P.; Claverie, C.; Roux, M.; Gennari, C. Angew. Chem., Int. Ed. 2003, 42, 234.

[50] Piarulli, U.; Claverie, C.; Daubos, P.; Gennari, C.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2003, 5, 4493.

[51] Larsen, A. O.; Leu, W.; Oberhuber, C. N.; Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 11130.

[52] Kacprzynski, M. A.; May, T. L.; Kazane, S. A.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 4554.

[53] Gillingham, D. G.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 3860.

[54] Lee, Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.; Hoveyda, A. H. J. Am. Chem. Soc. 2008. 130, 446.
文章导航

/