综述与进展

过渡金属催化的芳环磺酰胺化反应研究进展

  • 欧阳班来 ,
  • 郑燕霞 ,
  • 夏克坚 ,
  • 徐小玲 ,
  • 王艺
展开
  • 南昌师范学院 南昌 330032

收稿日期: 2019-10-05

  修回日期: 2019-12-16

  网络出版日期: 2012-06-19

基金资助

江西师范大学功能有机小分子教育部重点实验室开放课题(No.KLFS-KF-201721)和江西省教育厅科学技术研究(No.GJJ161235)资助项目.

Recent Progress in Transition Metal Catalyzed Sulfonamidation of Aromatic Compounds

  • Ouyang Banlai ,
  • Zheng Yanxia ,
  • Xia Kejian ,
  • Xu Xiaoling ,
  • Wang Yi
Expand
  • Department of Chemistry, Nanchang Normal University, Nanchang 330032

Received date: 2019-10-05

  Revised date: 2019-12-16

  Online published: 2012-06-19

Supported by

Project supported by the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University (No. KLFS-KF-201721) and the Science and Technology Project of the Education Department of Jiangxi Province (No. GJJ161235).

摘要

N-芳基磺酰胺骨架广泛存在于具有生物活性的分子中,在医药领域有十分重要的应用.因此研究N-芳基磺酰胺类化合物的合成方法受到了人们的广泛关注.近年来过渡金属催化的卤代芳烃、芳基硼酸和CAr—H键的磺酰胺化反应得到了快速发展,为N-芳基磺酰胺类化合物的合成提供了高效、绿色的方法.按照芳基源、过渡金属催化剂、配体和磺酰胺化试剂进行分类,综述了过渡金属催化的芳环磺酰胺化反应的最新研究进展,并对此类反应的研究方向进行了展望.

本文引用格式

欧阳班来 , 郑燕霞 , 夏克坚 , 徐小玲 , 王艺 . 过渡金属催化的芳环磺酰胺化反应研究进展[J]. 有机化学, 2020 , 40(5) : 1188 -1205 . DOI: 10.6023/cjoc201910002

Abstract

The N-arylsulfonamide group is an important moiety in medicinal chemistry because of its presence in many useful molecules with potential bioactivities. As a result, the development of synthetic routes to N-arylsulfonamides has been actively investigated. In recent years, the transition metal-catalyzed sulfonamidations of aryl halides, arylboronic acids and CAr-H bonds have extensively investigated, providing more efficient and environmentally friendly procedures for the synthesis of N-arylsulfonamides. The recent progress in the transition metal-catalyzed sulfonamidation reactions is reviewed. The aromatic substrates, transition metal-catalysts, ligands, sulfonamidating reagents, mechanisms of the sulfonamidation reactions are mainly discussed. Finally, the future development of them is also prospected.

参考文献

[1] (a) Hao, G.-F.; Yang, G.-F. Chin. J. Org. Chem. 2008, 28, 1545(in Chinese). (郝格非, 杨光富, 有机化学, 2008, 28, 1545.)
(b) He, S.-C.; Ponmani, J.; Avula, S.; Wang, X.-L.; Zhang, H.-Z.; Zhou, C.-H. Sci. Sin. Chim. 2016, 46, 823(in Chinese). (何世超, Jeyakkumar, P., Rao, A. S., 王宪龙, 张慧珍, 周成合, 中国科学:化学, 2016, 46, 823.)
(c) He, S.-C. MS Thesis, Southwest University, Chongqing, 2017 (in Chinese). (何世超, 硕士论文, 西南大学, 重庆, 2017.)
(d) Liu, Y. MS Thesis, Zhengzhou University, Zhengzhou, 2017 (in Chinese). (刘英超, 硕士论文, 郑州大学, 郑州, 2017.)
(e) Che, C.; Hu, Y.; Ding, S.; Xiao, Y.; Li, J.; Qin, Z. Chin. J. Org. Chem. 2019, 39, 419(in Chinese). (车传亮, 胡益敏, 丁珊珊, 肖玉梅, 李佳奇, 覃兆海, 有机化学, 2019, 39, 419.)
[2] (a) Skipper, P. L.; Kim, M. Y.; Sun, H. L.; Wogan, G. N.; Tannenbaum, S. R. Carcinogenesis 2010, 31, 50.
(b) Snodin, D. J. Org. Process Res. Dev. 2010, 14, 960.
[3] Yasuhara, A.; Kameda, M.; Sakamoto, T. Chem. Pharm. Bull. 1999, 47, 809.
[4] Fang, S.; Lü, M.; Long, Y.; Yang, D. Chin. J. Org. Chem. 2011, 31, 1573(in Chinese). (方晒, 吕梅香, 龙玉华, 杨定乔, 有机化学, 2011, 31, 1573.)
[5] (a) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
(b) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
(c) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450.
(d) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
(e) Deng, W.; Liu, L.; Guo, Q.-X. Chin. J. Org. Chem. 2004, 24, 150(in Chinese). (邓维, 刘磊, 郭庆祥, 有机化学, 2004, 24, 150.)
(f) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
[6] Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L. Tetrahedron 1996, 52, 7525.
[7] (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101.
(b) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.
[8] Burton, G.; Cao, P.; Li, G.; Rivero, R. Org. Lett. 2003, 5, 4373.
[9] Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 13001.
[10] Hicks, J. D.; Hyde, A. M.; Cuezva, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 16720.
[11] Rosen, B. R.; Ruble, J. C.; Beauchamp, T. J.; Navarro, A. Org. Lett. 2011, 13, 2564.
[12] Laffoon, S. D.; Chan, V. S.; Fickes, M. G.; Kotecki, B. J.; Ickes, A.; Henle, J.; Napolitano, J. G.; Franczyk, T. S.; Dunn, T. B.; Barnes, D. M.; Haight, A. R.; Henry, R. F.; Shekhar, S. ACS Catal. 2019, 9, 11691.
[13] He, H.; Wu, Y.-J. Tetrahedron Lett. 2003, 44, 3385.
[14] Tan, B. Y.-H.; Teo, Y.-C.; Seow, A.-H. Eur. J. Org. Chem. 2014, 2014, 1541.
[15] Deng, W.; Liu, L.; Zhang, C.; Liu, M.; Guo, Q.-X. Tetrahedron Lett. 2005, 46, 7295.
[16] Baffoe, J.; Hoe, M. Y.; Toure, B. B. Org. Lett. 2010, 12, 1532.
[17] Wang, X.; Guram, A.; Ronk, M.; Milne, J. E.; Tedrow, J. S.; Faul, M. M. Tetrahedron Lett. 2012, 53, 7.
[18] Han, X. Tetrahedron Lett. 2010, 51, 360.
[19] Kim, T.; McCarver, S. J.; Lee, C.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2018, 57, 3488.
[20] For selected reviews, see: (a) Duan, X.; Liu, N.; Wang, J.; Ma, J. Chin. J. Org. Chem. 2019, 39, 661(in Chinese). (段希焱, 刘宁, 王佳, 马军营, 有机化学, 2019, 39, 661.)
(b) Ma, X.; Liu, F.; Mo, D. Chin. J. Org. Chem. 2017, 37, 1069(in Chinese). (马小盼, 刘凤萍, 莫冬亮, 有机化学, 2017, 37, 1069.)
(c) Sanjeeva Rao, K.; Wu, T.-S. Tetrahedron 2012, 68, 7735.
(d) Qiao, J.; Lam, P. Synthesis 2010, 829.
[21] For recent examples, see: (a) Jiao, J.-W.; Bi, H.-Y.; Zou, P.-S.; Wang, Z.-X.; Liang, C.; Mo, D.-L. Adv. Synth. Catal. 2018, 360, 3254.
(b) Mo, X.-L.; Chen, C.-H.; Liang, C.; Mo, D.-L. Eur. J. Org. Chem. 2018, 2018, 150.
(c) Vantourout, J. C.; Miras, H. N.; Isidro-Llobet, A.; Sproules, S.; Watson, A. J. J. Am. Chem. Soc. 2017, 139, 4769.
(d) Shi, W.-M.; Liu, F.-P.; Wang, Z.-X.; Bi, H.-Y.; Liang, C.; Xu, L.-P.; Su, G.-F.; Mo, D.-L. Adv. Synth. Catal. 2017, 359, 2741.
(e) Chen, C. H.; Liu, Q. Q.; Ma, X. P.; Feng, Y.; Liang, C.; Pan, C. X.; Su, G. F.; Mo, D. L. J. Org. Chem. 2017, 82, 6417.
[22] Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
[23] Lam, P. Y. S.; Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, P. K. Tetrahedron Lett. 2001, 42, 3415.
[24] Lan, J.-B.; Zhang, G.-L.; Yu, X.-Q.; You, J.-S.; Chen, L.; Yan, M.; Xie, R.-G. Synlett 2004, 1095.
[25] Pan, C.; Cheng, J.; Wu, H.; Ding, J.; Liu, M. Synth. Commun. 2009, 39, 2082.
[26] Kantam, M. L.; Neelima, B.; Reddy, C. V.; Neeraja, V. J. Mol. Catal. A:Chem. 2006, 249, 201.
[27] (a) Azarifar, D.; Soleimanei, F. RSC Adv. 2014, 4, 12119.
(b) Nasrollahzadeh, M.; Ehsani, A.; Maham, M. Synlett 2014, 25, 505.
[28] Vantourout, J. C.; Li, L.; Bendito-Moll, E.; Chabbra, S.; Arrington, K.; Bode, B. E.; Isidro-Llobet, A.; Kowalski, J. A.; Nilson, M. G.; Wheelhouse, K. M. P.; Woodard, J. L.; Xie, S.; Leitch, D. C.; Watson, A. J. B. ACS Catal. 2018, 8, 9560.
[29] Moon, S. Y.; Nam, J.; Rathwell, K.; Kim, W. S. Org. Lett. 2014, 16, 338.
[30] Ouyang, B.; Liu, D.; Xia, K.; Zheng, Y.; Mei, H.; Qiu, G. Synlett 2018, 29, 111.
[31] Ouyang, B.; Zheng, Y.; Liu, Y.; Liu, F.; Yao, J.; Peng, Y. Tetrahedron Lett. 2018, 59, 3694.
[32] (a) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
(b) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
[33] Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048.
[34] Youn, S. W.; Bihn, J. H.; Kim, B. S. Org. Lett. 2011, 13, 3738.
[35] Xiao, B.; Gong, T. J.; Xu, J.; Liu, Z. J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466.
[36] Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790.
[37] John, A.; Nicholas, K. M. J. Org. Chem. 2011, 76, 4158.
[38] Shang, M.; Sun, S. Z.; Dai, H. X.; Yu, J. Q. J. Am. Chem. Soc. 2014, 136, 3354.
[39] Lee, W. C.; Shen, Y.; Gutierrez, D. A.; Li, J. J. Org. Lett. 2016, 18, 2660.
[40] Song, C.; Wang, T.; Yu, T.; Cui, D. M.; Zhang, C. Org. Biomol. Chem. 2017, 15, 7212.
[41] Meyer, A. U.; Berger, A. L.; König, B. Chem. Commun. 2016, 52, 10918.
[42] Tong, K.; Liu, X.; Zhang, Y.; Yu, S. Chem.-Eur. J. 2016, 22, 15669.
[43] Gao, Y.; Chen, S.; Lu, W.; Gu, W.; Liu, P.; Sun, P. Org. Biomol. Chem. 2017, 15, 8102.
[44] Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1951.
[45] Díaz-Requejo, M. M.; Belderraín, T. S. R.; Nicasio, M. C.; Trofimenko, S.; Pérez J. P. J. Am. Chem. Soc. 2003, 125, 12078.
[46] Hamilton, C. W.; Laitar, D. S.; Sadighi, J. P. Chem. Commun. 2004, 1628.
[47] He, L.; Chan, P. W.; Tsui, W. M.; Yu, W. Y.; Che, C. M. Org. Lett. 2004, 6, 2405.
[48] Fructos, M. R.; Trofimenko, S.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2006, 128, 11784.
[49] Li, Z.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129, 12058.
[50] Zhao, H.; Shang, Y.; Su, W. Org. Lett. 2013, 15, 5106.
[51] Li, H.; Deng, H. Synthesis 2017, 49, 2711.
[52] Dong, Y.; Sun, S.; Yu, J.-t.; Cheng, J. Tetrahedron Lett. 2019, 60, 1349.
[53] (a) Kim, S. H.; Park, S. H.; Choi, J. H.; Chang, S. Chem. Asian J. 2011, 6, 2618.
(b) Lu, P.; Wang, Y. Chem. Soc. Rev. 2012, 41, 5687.
(c) Santiago, J. Synlett 2015, 26, 2323.
(d) Zhang, W.; Xu, W.; Kuang, C. Chin. J. Org. Chem. 2015, 35, 2059(in Chinese). (张文生, 许文静, 匡春香, 有机化学, 2015, 35, 2059.)
[54] Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110.
[55] Park, S. H.; Kwak, J.; Shin, K.; Ryu, J.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 2492.
[56] Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10, 8953.
[57] Yu, D. G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
[58] Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
[59] Wang, H.; Yu, Y.; Hong, X.; Tan, Q.; Xu, B. J. Org. Chem. 2014, 79, 3279.
[60] Jia, X.; Han, J. J. Org. Chem. 2014, 79, 4180.
[61] Zhang, C.; Zhou, Y.; Deng, Z.; Chen, X.; Peng, Y. Eur. J. Org. Chem. 2015, 2015, 1735.
[62] Lee, D.; Kim, Y.; Chang, S. J. Org. Chem. 2013, 78, 11102.
[63] Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. Organometallics 2014, 33, 4076.
[64] Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Chem.-Eur. J. 2014, 20, 12421.
[65] Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770.
[66] Kim, J.; Chang, S. Angew. Chem., Int. Ed. 2014, 53, 2203.
[67] Shin, K.; Chang, S. J. Org. Chem. 2014, 79, 12197.
[68] Hou, W.; Yang, Y.; Ai, W.; Wu, Y.; Wang, X.; Zhou, B.; Li, Y. Eur. J. Org. Chem. 2015, 2015, 395.
[69] Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.
[70] Pi, C.; Cui, X.; Wu, Y. J. Org. Chem. 2015, 80, 7333.
[71] Kim, Y.; Park, J.; Chang, S. Org. Lett. 2016, 18, 1892.
[72] Xu, L.; Tan, L.; Ma, D. J. Org. Chem. 2016, 81, 10476.
[73] Song, Z.; Antonchick, A. P. Org. Biomol. Chem. 2016, 14, 4804.
[74] Li, Y.; Feng, Y.; Xu, L.; Wang, L.; Cui, X. Org. Lett. 2016, 18, 4924.
[75] Zhang, Y. F.; Wu, B.; Shi, Z. J. Chem.-Eur. J. 2016, 22, 17808.
[76] Mu, D.; Wang, X.; Chen, G.; He, G. J. Org. Chem. 2017, 82, 4497.
[77] Das, D.; Samanta, R. Adv. Synth. Catal. 2018, 360, 379.
[78] Kim, J.; Kim, J.; Chang, S. Chem.-Eur. J. 2013, 19, 7328.
[79] (a) Bhanuchandra, M.; Yadav, M. R.; Rit, R. K.; Rao Kuram, M.; Sahoo, A. K. Chem. Commun. 2013, 49, 5225.
(b) Zheng, Q. Z.; Liang, Y. F.; Qin, C.; Jiao, N. Chem. Commun. 2013, 49, 5654.
[80] Thirunavukkarasu, V. S.; Raghuvanshi, K.; Ackermann, L. Org. Lett. 2013, 15, 3286.
[81] Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2013, 15, 1638.
[82] Barnes, D. M.; Shekhar, S.; Dunn, T. B.; Barkalow, J. H.; Chan, V. S.; Franczyk, T. S.; Haight, A. R.; Hengeveld, J. E.; Kolaczkowski, L.; Kotecki, B. J.; Liang, G.; Marek, J. C.; McLaughlin, M. A.; Montavon, D. K.; Napier, J. J. J. Org. Chem. 2019, 84, 4873.
文章导航

/