磷杂环戊二烯[1,5]-σ键迁移的新进展
收稿日期: 2012-08-27
修回日期: 2012-09-19
网络出版日期: 2012-09-24
基金资助
国家自然科学基金(No. 21072179)资助项目.
Recent Advances of [1,5]-Sigmatropic Shift of Phospholes
Received date: 2012-08-27
Revised date: 2012-09-19
Online published: 2012-09-24
Supported by
Project supported by the National Natural Science Foundation of China (No. 21072179).
磷杂环戊二烯在探索磷化学的研究中发挥了重要的作用, 并广泛应用于配位化学、催化和有机光电材料等领域. [1,5]-σ键迁移(以下简称[1,5]迁移)是磷杂环戊二烯的一类重要反应. 该迁移主要是由于磷杂环戊二烯弱的芳香性和环外磷上取代基的σ键与环内二烯体的反键轨道存在一定的σ-π*超共轭效应等特性所共同造成的. 该反应自发现以来就成为磷杂环戊二烯衍生化的重要和有效手段. 主要介绍了近几年来人们利用磷杂环戊二烯[1,5]迁移特性设计与合成新型有机磷化合物和含磷光电材料的研究进展.
关键词: 磷杂环戊二烯; [1,5]-σ键迁移; 有机磷
王丽丽 , 田荣强 , 段征 , Francois Mathey . 磷杂环戊二烯[1,5]-σ键迁移的新进展[J]. 有机化学, 2013 , 33(01) : 36 -45 . DOI: 10.6023/cjoc201208028
Phosphole plays an important role in the modern organophosphorus chemistry. Due to its structure specialities, the exocyclic P—R σ bond shows significant interaction with the π* orbital of the dienic system and this overlap favors the [1,5]-sigmatropic shift of the substitutent (R) of P from phosphorus to carbon. This provides an efficient method to prepare various functionalized phospholes. This review is concerning the recent application of [1,5]-sigmatropic shift of phospholes in the organophosphorus and material chemistry.
Key words: phosphole; [1,5]-sigmatropic shift; organophosphorus
[1] Coggon, P.; Engel, J. F.; McPhail, A. T.; Quin, L. D. J. Am. Chem. Soc. 1970, 92, 5779.
[2] Cyranski, M. K.; Krygowski, T. M.; Katritzky, A. R.; Schleyer, P. v. R. J. Org. Chem. 2002, 67, 1333.
[3] Mathey, F.; Mercier, F.; Charrier, C.; Fischer, J.; Mitschler, A. J. Am. Chem. Soc. 1981, 103, 4595.
[4] Laporte, F.; Mercier, F.; Ricard, L.; Mathey, F. Bull. Soc. Chim. Fr. 1993, 130, 843.
[5] Mathey, F. Acc. Chem. Res. 2004, 37, 954.
[6] Dinadayalane, T. C.; Geetha, K.; Sastry, G. N. J. Phys. Chem. A 2003, 107, 5479.
[7] Bachrach, S. M. J. Org. Chem. 1993, 58, 5414.
[8] Charier, C.; Bonnard, H.; de Lauzon, G.; Mathey, F. J. Am. Chem. Soc. 1983, 105, 6871.
[9] Clochard, M.; Grundy, J.; Donnadieu, B.; Mathey, F. Org. Lett. 2005, 7, 4511.
[10] (a) Keglevich, G.; Bocskei, Z.; Keseru, G. M.; Ujszaszy, K.; Quin, L. D. J. Am. Chem. Soc. 1997, 119, 5095.
(b) Barluenga, J.; Lopez, F.; Palacios, F. J. Chem. Soc., Chem. Commun. 1986, 1574.
[11] Englich, U.; Hassler, K.; Ruhlandt-Senge, K.; Uhlig, F. Inorg. Chem. 1998, 37, 3532.
[12] Carmichael, D.; Mathey, F.; Ricard, L.; Seeboth, N. Chem. Commun. 2002, 2976.
[13] Clochard, M.; Duffy, M. P.; Donnadieu, B.; Mathey, F. Organometallics 2008, 27, 567.
[14] Robin, F.; Mercier, F.; Ricard, L.; Mathey, F.; Spagnol, M. Chem. Eur. J. 1997, 3, 1365.
[15] Faitg, T.; Soulie, J.; Lallemand, J.-Y.; Mercier, F.; Mathey, F. Tetrahedron 2000, 56, 101.
[16] Siutkowski, M.; Mercier, F.; Ricard, L.; Mathey, F. Organometallics 2006, 25, 2585.
[17] Lelievre, S.; Mercier, F.; Ricard, L.; Mathey, F. Tetrahedron: Asymmetry 2000, 11, 4601.
[18] (a) Mathey, F.; Mercier, F.; Nief, F.; Fischer, J.; Mitschler, A. J. Am. Chem. Soc. 1982, 104, 2077.
(b) Fischer, J.; Mitschler, A.; Mathey, F.; Mercier, F. J. Chem. Soc., Dalton Trans. 1983, 841.
(c) Bevierre, M.-O.; Mercier, F.; Ricard, L.; Mathey, F. Bull. Soc. Chim. Fr. 1992, 129, 1.
[19] Bevierre, M.-O.; Mercier, F.; Ricard, L.; Mathey, F. Angew. Chem., Int. Ed. Engl. 1990, 29, 655.
[20] Mercier, F.; Laporte, F.; Ricard, L.; Mathey, F.; Schroder, M.; Regitz, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2364.
[21] Tissot, O.; Gouygou, M.; Dallemer, F.; Daran, J.-C.; Balavoine, G. G. A. Angew. Chem., Int. Ed. 2001, 40, 1076.
[22] Robe, E.; Ortega, C.; Mikina, M.; Mikolajczyk, M.; Daran, J.-C.; Gouygou, M. Organometallics 2005, 24, 5549.
[23] Tissot, O.; Gouygou, M.; Daran, J.-C.; Balavoine, G. G. A. Chem. Commun. 1996, 2287.
[24] Ortega, C.; Gouygou, M.; Daran, J.-C. Chem. Commun. 2003, 1154.
[25] Diab, L.; Daran, J.-C.; Gouygou, M.; Manoury, E.; Urrutigoity, M. Acta Crystallogr. 2008, C64, m43.
[26] Robe, E.; Perlikowska, W.; Lemoine, C.; Diab, L.; Vincendeau, S.; Mikolajczyk, M.; Daran, J.-C.; Gouygou, M. Dalton Trans. 2008, 21, 2894.
[27] Diab, L.; Gouygou, M.; Manoury, E.; Kalck, P.; Urrutigoity, M. Tetrahedron Lett. 2008, 49, 5186.
[28] Robe, E.; Hegedues, C.; Bakos, J.; Coppel, Y.; Daran, J.-C.; Gouygou, M. Inorg. Chim. Acta 2008, 361, 1861.
[29] (a) Breit, B. Chem. Commun. 1996, 2071.
(b) Breit, B. J. Mol. Catal. A 1999, 143, 143.
(c) Breit, B.; Winde, R.; Harms, K. J. Chem. Soc., Perkin Trans. 1 1997, 2681.
(d) Breit, B.; Winde, R.; Mackewitz, T.; Paciello, R.; Harms, K. Chem. Eur. J. 2001, 7, 3106.
(e) Weber, L. Angew. Chem., Int. Ed. 2002, 41, 563.
(f) Reetz, M. T.; Li, X G. Angew. Chem., Int. Ed. 2005, 44, 2962.
(g) Müller,C.; Lopez, L. G.; Kooijman, H.; Spek, A. L.; Vogt, D. Tetrahedron Lett. 2006, 47, 2017.
(h) Knoch, F.; Kremer, F.; Schmidt, U.; Zennek, U.; Le Floch, P.; Mathey, F. Organometallics 1996, 15, 2713.
(i) Bell, J. R.; Franken, A.; Garner, C. M. Tetrahedron 2009, 65, 9368.
(j) Mallissery, S. K.; Gudat, D. Dalton Trans. 2010, 39, 4280.
(k) Komath Mallissery, S.; Nieger, M.; Gudat, D. Z. Anorg. Allg. Chem. 2010, 636, 1354.
[30] (a) Mathey, F. Tetrahedron Lett. 1979, 1753.
(b) Alcaraz, J.-M.; Breque, A.; Mathey, F. Tetrahedron Lett. 1982, 23, 1565.
(c) Nief, F.; Charrier, C.; Mathey, F.; Simalty, M. Tetrahedron Lett. 1980, 21, 1441.
(d) Huy, N. H. T.; Donnadieu, B.; Mathey, F. Organometallics 2007, 26, 6497.
(e) Alcarez, J.-M.; Breque, A.; Mathey, F. Tetrahedron Lett. 1982, 23, 1666.
(f) Alcaraz, J.-M.; Deschamps, E.; Mathey, F. Phosphorus, Sulfur Silicon Relat. Elem. 1984, 19, 45.
(g) Roesch, W.; Regitz, M. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1986, 41B, 931.
[31] Grundy, J.; Mathey, F. Angew. Chem., Int. Ed. 2005, 44, 1082.
[32] (a) Märkl, G.; Hauptmann, H.; Advena, J. Angew. Chem., Int. Ed. Engl. 1972, 11, 441.
(b) Märkl, G.; Advena, J.; Hauptmann, H. Tetrahedron Lett. 1974, 15, 303.
[33] Divisia, B. Tetrahedron 1979, 35, 181.
[34] Chen, H.; Li, J.; Wang, H.; Liu, H.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2011, 1540.
[35] Holand, S.; Ricard, L.; Mathey, F. J. Org. Chem. 1991,56, 4031.
[36] Mao, Y.; Mathey, F. Org. Lett. 2012, 14, 1162.
[37] Charrier, C.; Bonnard, H.; Mathey, F. J. Org. Chem. 1982, 47, 2376.
[38] (a) Herrmann, W. A.; Kohlpaintner, C. W.; Manetsberger, R. B.; Bahrmann, H.; Kottmann, H. J. Mol. Catal. A 1995, 97, 65.
(b) Mouriès, V.; Mercier, F.; Ricard, L.; Mathey, F. Eur. J. Org. Chem. 1998, 11, 2683.
(c) Gilbertson, S. R.; Genov, D. G.; Rheingold, A. L. Org. Lett. 2000, 2, 2885.
[39] Wang, H. Q.; Li, C.; Geng, D. J.; Chen, H.; Duan, Z.; Mathey, F. Chem. Eur. J. 2010, 16, 10659.
[40] (a) Holand, S.; Jeanjean, M.; Mathey, F. Angew. Chem., Int. Ed. Engl. 1997, 36, 98.
(b) Toullec, P.; Mathey, F. Synlett 2001, 1977.
[41] Escobar, A.; Donnadieu, B.; Mathey, F. Organometallics 2008, 27, 1887.
[42] Tian, R. Q.; Escobar, A.; Mathey, F. Organometallics 2011, 30, 1738.
[43] Tian, R. Q.; Ng. Y. X.; Ganguly, R.; Mathey, F. Organometallics 2012, 31, 2486.
[44] Lacombe, S.; Gonbeau, D.; Cabioch, J.-L.; Pellerin, B.; Denis, J.-M.; Pfister-Guillouzo, G. J. Am. Chem. Soc. 1988, 110, 6964.
[45] Grundy, J.; Donnadieu, B.; Mathey, F. J. Am. Chem. Soc. 2006, 128, 7716.
[46] Matano, Y.; Nakabuchi, T.; Miyajima, T.; Imahori, H.; Nakano, H. Org. Lett. 2006, 8, 5713.
[47] Duan, Z.; Clochard, M.; Donnadieu, B.; Mathey, F.; Tham, F. S. Organometallics 2007, 26, 3617.
[48] Escobar, A.; Mathey, F. Organometallics 2010, 29, 1053.
[49] Tian, R. Q.; Mathey, F. Organometallics 2011, 30, 3472.
[50] Carmichael, D.; Escalle-Lewis, A.; Frison, G.; Le Goff, X.; Muller, E. Chem. Commun. 2012, 48, 302.
[51] (a) Baumgartner, T.; Réau, R. Chem. Rev. 2006, 106, 4681.
(b) Hobbs, M. G.; Baumgartner, T. Eur. J. Inorg. Chem. 2007, 23, 3611.
(c) Hissler, M.; Lescop, C.; Réau, R. Pure Appl. Chem. 2007, 79, 201.
(d) Crassous, J.; Réau, R. Dalton Trans. 2008, 48, 6865.
(e) Dienes, Y.; Eggenstein, M.; Kárpáti, T.; Sutherland, T. C.; Nyulászi, L.; Baumgartner, T. Chem. Eur. J. 2008, 14, 9878.
(f) Yan, S. L.; Chen, J. W.; Cao, Y. J. Mol. Sci. 2008, 24, 371 (in Chinese). (阎石磊, 陈军武, 曹镛, 分子科学学报, 2008, 24, 371.)
(g) Matano, Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258.
(h) Zhang, S. L.; Chen, R. F.; Jiang, H. J.; Liu, B.; Huang, W. Prog. Chem. 2010, 22, 898 (in Chinese). (张胜兰, 陈润锋, 姜鸿基, 刘斌, 黄维, 化学进展, 2010, 22, 898.)
(i) Wu, J.; Wu, S. X.; Geng, Y.; Yang, G. C.; Muhammad, S.; Jin, J. L.; Liao, Y.; Su, Z. M. Theor. Chem. Acc. 2010, 127, 419.
(j) Matano, Y.; Saito, A.; Fukushima, T.; Tokudome, Y.; Suzuki, F.; Sakamaki, D.; Kaji, H.; Ito, A.; Tanaka, K.; Imahori, H. Angew. Chem., Int. Ed. 2011, 5 0, 8016.
(k) Wan, J. H.; Fang, W. F.; Li, Y. B.; Xiao, X. Q.; Zhang, L. H.; Xu, Z.; Peng, J. J.; Lai, G. Q. Org. Biomol. Chem. 2012, 10, 1459. (l) Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K. Angew. Chem., Int. Ed. 2012, 51, 695.
[52] Huy, N. H. T.; Donnadieu, B.; Mathey, F.; Muller, A.; Colby, K.; Bardeen, C. J. Organometallics 2008, 27, 5521.
[53] Chen, H.; Delaunay, W.; Yu, L. J.; Joly, D.; Wang, Z. Y.; Li, J.; Wang, Z. S.; Lescop, C.; Tondelier, D.; Geffroy, B.; Duan, Z.; Hissler, M.; Mathey, F.; Réau, R. Angew. Chem., Int. Ed. 2012, 51, 214.
/
〈 |
|
〉 |