研究简报

磺酸功能化纳米γ-Al2O3催化下合成硫醚类化合物

  • 李卫林 ,
  • 李爽 ,
  • 武利强 ,
  • 闫福林
展开
  • a 新乡医学院药学院 新乡 453003;
    b 新乡医学院基础医学院 新乡 453003

收稿日期: 2012-11-01

  修回日期: 2012-12-18

  网络出版日期: 2013-01-04

基金资助

河南省教育厅科学技术研究重点(No. 12B350005)资助项目.

Sulfonic Acid Functionalized Nano γ-Al2O3 Catalyzed Synthesis of Thioethers

  • Li Weilin ,
  • Li Shuang ,
  • Wu Liqiang ,
  • Yan Fulin
Expand
  • a School of Pharmacy, Xinxiang Medical University, Xinxiang 45300;
    b School of Basic Medical Sciences, Xinxiang Medical Univirsity, Xinxiang 453003

Received date: 2012-11-01

  Revised date: 2012-12-18

  Online published: 2013-01-04

Supported by

Project supported by the Foundation of Henan Educational Committee (No. 12B350005).

摘要

在磺酸功能化纳米γ-Al2O3催化下, 以硫醇或硫酚和醇类化合物为原料, 在室温、无溶剂条件下, 高收率地实现了一系列硫醚类化合物的合成, 产物结构经1H NMR, 13C NMR和元素分析进行了表征.

本文引用格式

李卫林 , 李爽 , 武利强 , 闫福林 . 磺酸功能化纳米γ-Al2O3催化下合成硫醚类化合物[J]. 有机化学, 2013 , 33(05) : 1119 -1124 . DOI: 10.6023/cjoc201211001

Abstract

A series of thioethers were synthesized efficiently in high yields by reaction of thiols with alcohols in the presence of sulfonic acid functionalized nano γ-Al2O3 at room temperature under solvent-free conditions. All products were characterized by 1H NMR, 13C NMR spectra and elemental analysis.

参考文献

[1] Moberg, H. I.; Omnaas, J. R. J. Am. Chem. Soc. 1985, 107, 2986.
[2] Hurby, V. J.; Al-Obeidi, F.; Kazmierski, W. Biochem. J. 1990, 268, 249.
[3] Kataoka, T.; Beusen, D. D.; Clark, J. D.; Yodo, M.; Marshall, G. R. Biopolymers 1992, 32, 1519.
[4] Hurby, V. J.; Bonner, G. G. Methods Mol. Biol. 1994, 35, 201.
[5] Li, Y.-Y.; Huang, Z.-G.; Xu, P.-F.; Zhang, Y.-N.; Wang, J.-B. Acta Chim. Sinica 2012, 70, 2024 (in Chinese).
(李玉叶, 黄重行, 许鹏飞, 张艳, 王剑波, 化学学报, 2012, 70, 2024.)
[6] Solladie, G. Synthesis 1981, 185.
[7] Mata, E. G. Phosphorus, Sulfur Silicon Relat. Elem. 1996, 117, 231.
[8] Carreno, M. C. Chem Rev. 1995, 95, 1717.
[9] Paquette, L. A. Synlett 2001, 1.
[10] Madesclaire, M. Tetrahedron 1988, 44, 6537.
[11] Nicolaou, K. C.; Koumbis, A. E.; Snyder, S. A.; Simonsen, K. B. Angew. Chem., Int. Ed. 2000, 39, 2529.
[12] (a) Herradura, P. S.; Pendola, K. A.; Guy, R. K. Org. Lett. 2000, 2, 2019.
(b) Firouzabadi, H.; Iranpoor Gholinejad, M. Adv. Synth. Catal. 2010, 352, 119.
[13] Wendeborn, S.; De Mesmaeker, A.; Brill, W. K.-D.; Berteina, S. Acc. Chem. Res. 2000, 33, 215.
[14] Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309.
[15] Hu, B. L.; Hu, H. N.;, Sun L. L.; Tang, R. Y. Chin. J. Chem. 2012, 30, 2556.
[16] (a) Kumar, P.; Pandey, P. K.; Hegde, V. R. Synlett 1999, 1921.
(b) Chelucci, G.; Culeddu, N.; Saba, A.; Valenti, R. Tetrahedron: Asymmetry 1999, 10, 3537.
(c) Lou, F.-W.; Zhou, J.-F.; Lin, X.-F.; Chen, Z.-C. Acta Chim. Sinica 2010, 68, 1223 (in Chinese).
(娄凤文, 周建峰, 林贤福, 化学学报, 2010, 68, 1223.)
[17] (a) Falck, J. R.; Lai, J.-Y.; Cho, S.-D.; Yu, J. Tetrahedron Lett. 1999, 40, 2903.
(b) Garofalo, A.; Campiani, G.; Fiorini, I.; Nacci, V. Tetrahedron 1999, 55, 1479.
(c) Shibata, K.; Yamaga, H.; Mitsunobu, O. Heterocycles 1999, 50, 947.
(d) Palomo, C.; Oiarbide, M.; Lopez, R.; Gomez-Bengoa, E. Tetrahedron Lett. 2000, 41, 1283.
(e) Zaragoza, F. Tetrahedron 2001, 57, 5451.
[18] (a) Zaragoza, F.; Stephensen, H. Angew. Chem., Int. Ed. 2000, 39, 554.
(b) Dowsland, J.; McKerlie, F.; Procter, D. J. Tetrahedron Lett. 2000, 41, 4923.
[19] Bell, T. N.; Kirszensztejn, P.; Czajka, B. Catal. Lett. 1995, 30, 305
[20] Hu, Y.-H.; Gao, J.; Wang, J.; Dong, L.; Ding, W.-P.; Chen, Y. Chem. J. Chin. Univ. 2001, 22, 1735 (in Chinese).
(胡玉海, 高健, 王军, 董林, 丁维平, 陈懿, 高等学校化学学报, 2001, 22, 1735.)
文章导航

/