研究专题

双模式Lewis Acid介导串联环化反应在天然产物全合成中的应用

  • 朱礼志 ,
  • 杜广延 ,
  • 杨炜 ,
  • 闵龙 ,
  • 刘小卒 ,
  • 黄双平 ,
  • 韩叶俭 ,
  • 李志成
展开
  • 北京大学深圳研究生院 化学生物学与生物技术学院 化学基因组学实验室 深圳 518055

收稿日期: 2013-07-06

  修回日期: 2013-08-09

  网络出版日期: 2013-08-16

基金资助

国家自然科学基金(Nos. 20672003, 20972004, 21272012 )资助项目

Applications of Dual-Mode Lewis Acids Induced Cascade Cyclization Reactions in Natural Product Synthesis

  • Zhu Lizhi ,
  • Du Guangyan ,
  • Yang Wei ,
  • Min Long ,
  • Liu Xiaozu ,
  • Huang Shuangping ,
  • Han Yejian ,
  • Lee Chi-Sing
Expand
  • Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055

Received date: 2013-07-06

  Revised date: 2013-08-09

  Online published: 2013-08-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20672003, 20972004, 21272012).

摘要

综述了近年来我们研究小组在双模式路易斯酸介导的串联反应研究方面的进展. 利用双模式路易斯酸的特殊性质, 发展了三种新的串联环化反应, 并通过拓展反应起始底物的方式对方法学的底物适用性进行了探究, 最后, 将方法学应用至天然产物全合成的研究之中.

本文引用格式

朱礼志 , 杜广延 , 杨炜 , 闵龙 , 刘小卒 , 黄双平 , 韩叶俭 , 李志成 . 双模式Lewis Acid介导串联环化反应在天然产物全合成中的应用[J]. 有机化学, 2013 , 33(10) : 2031 -2045 . DOI: 10.6023/cjoc201307010

Abstract

This account covers the recent advance of the dual-mode Lewis acid induced cascade cyclization reactions in our group. Taking advantage of the special properties of the dual-mode Lewis acids, three new types of cascade reactions have been developed. Moreover, the applicability of the cascade cyclization reactions was explored through studying the scope of substrates. Finally, these reactions were employed for total syntheses of natural products.

参考文献

[1] (a) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.

(b) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.

(c) Pearson, R. G. J. Am. Chem. Soc. 1988, 110, 7684.

[2] (a) Bunce, R. A. Tetrahedron 1995, 51, 13103.

(b) Tietze, L. F. Chem. Rev. 1996, 96, 115.

(c) Pellissier, H. Tetrahedron 2006, 62, 1619.

(d) Pellissier, H. Tetrahedron 2006, 62, 2143.

(e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.

(f) Arns, S.; Barriault, L. Chem. Commun. 2007, 2211.

(g) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.

(h) Wang, Z.; Yu, B.; Cui, Y.; Sun, X.; Bao, W. Chin. J. Chem. 2011, 29, 2769.

(i) Wang, Z.; Yu, B.; Zhang, X.; Sun, X.; Bao, W. Chin. J. Chem. 2011, 29, 2775.

(j) Liu, Z.; Tan, L.; Wu, Q.; Lin, X. Chin. J. Chem. 2012, 30, 2343.

(k) Yin, X.; Zhou, Q.; Dong, L. Chen, Y. Chin. J. Chem. 2012, 30, 2669.

(l) Zhu, L.; Ran, H. Chin. J. Chem. 2013, 31, 111.

[3] (a) Hirota, K; Kitade, Y.; Senda, S. Tetrahedron Lett. 1981, 22, 2409.

(b) Boncel, S.; Maczka, M.; Walczak, K. Z. Tetrahedron 2010, 66, 8450.

(c) Appel, B.; Rotzoll, S.; Kranich, R.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 16, 3638.

[4] (a) Liu, Y. X.; Lu, K.; Dai, M. J.; Wang, K.; Wu, W. Q.; Chen, J. H.; Yang, Z. Org. Lett. 2007, 9, 805.

(b) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650.

(c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668.

[5] (a) Conia, J. M.; Le Perchec, P. Synthesis 1975, 1.

(b) Caine, D. In Comprehensive Organic Synthesis, Vol. 3, Eds.: Trost, B. M.; Fleming, I., Pergamon Press, Oxford, 1991, p. 1.

[6] (a) Dénès, F.; Pérez-Luna, A.; Chemla, F. Chem. Rev. 2010, 110, 2366.

(b) Drouin, J.; Boaventura, M. A.; Conia, J.-M. J. Am. Chem. Soc. 1985, 107, 1726.

[7] All the calculations were carried out with the Gaussian 09 package. Geometry optimizations and frequency calculations were performed with the M06 method with BSI (the LANL2DZ basis set and corresponding effective core potentials (ECPs) for elements with atomic number higher than 36, and the 6-31G(d) basis set112 for other atoms). The transition states (TS) were confirmed by frequency calculation and intrinsic reaction coordinate (IRC) calculations. All the TS stationary points were correctly connected to the corresponding species. Vibrational frequency calculations also provide thermal corrections for enthalpies and Gibbs free energies (at 298.15 K and 101 kPa). For reaction energy profile, single point energies were calculated at the M06 level with a larger basis sets BSII (def2-TZVP with ECP for In and 6-311++G(3df,3pd) for other atoms). Solvent effects were taken into account by using the SMD solvation model.

[8] Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.

[9] Tang, Y.; Oppenheimer, J.; Song, Z.; You, L.; Zhang, X.; Hsung, R. P. Tetrahedron 2006, 62, 10785.

[10] (a) Sugano, M.; Sato, A.; Iijima, Y.; Oshima, T.; Furuya, K.; Kuwano, H.; Hata, T.; Hanzawa, H. J. Am. Chem. Soc. 1991, 113, 5463.

(b) Bhat, S. V.; Bajwa, B. S.; Dornauer, H.; de Souza, N. J.; Fehlhaber, H.-W. Tetrahedron Lett. 1977, 33, 1669.

(c) Malakov, P. Y.; Papanov, G. Y.; Spassov, S. L. Phytochemistry 1997, 44, 121.

[11] (a) Hsung, R. P. J. Org. Chem. 1997, 62, 7904.

(b) Seth, P. P.; Chen, D.; Wang, J.; Gao, X.; Totah, N. I. Tetrahedron 2000, 56, 10185.

(c) Chemler, S. R.; Iserloh, U.; Danishefsky, S. J. Org. Lett. 2001, 3, 2949.

(d) Wender, P. A.; Gamber, G. G.; Scanio, M. J. C. Angew. Chem., Int. Ed. 2001, 40, 3895.

(e) Tietze, L. F.; Evers, H.; Töpken, E. Angew. Chem., Int. Ed. 2001, 40, 903.

(f) Génisson, Y.; Tyler, P. C.; Ball, R. G.; Young, R. N. J. Am. Chem. Soc. 2001, 123, 11381.

(g) Rodriguez, R.; Adlington, R. M.; Moses, J. E.; Cowley, A.; Baldwin, J. E. Org. Lett. 2004, 6, 3617.

(h) Cole, K. P.; Hsung, R. P. Chem. Commun. 2005, 5784.

[12] (a) Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131.

(b) Linares-Palomino, P. J.; Salido, S.; Altarejos, J.; Sánchez, A. Tetrahedron Lett. 2003, 44, 6651.

(c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122.

(d) Kumazawa, K.; Ishihara, K.; Yamamoto, H. Org. Lett. 2004, 6, 2551.

(e) Koh, J. H.; Gagné, M. R. Angew. Chem., Int. Ed. 2004, 43, 3459.

(f) Kurdyumov, A. V.; Hsung, R. P. J. Am. Chem. Soc. 2006, 128, 6272.

[13] (a) Dumez, E.; Faure, R.; Dulcère, J.-P. Eur. J. Org. Chem. 2001, 2577.

(b) Lesch, B.; Bräse, S. Angew. Chem., Int. Ed. 2004, 43, 115.

[14] (a) Mi, B.; Maleczka, R. B., Jr. Org. Lett. 2001, 3, 1491.

(b) Boeckman, R. K., Jr.; del Rosario Rico Ferreira, M.; Mitchell, L. H.; Shao, P. J. Am. Chem. Soc. 2002, 124, 190.

(c) Anikin, A.; Maslov, M.; Sieler, J.; Blaurock, S.; Baldamus, J.; Hennig, L.; Findeisen, M.; Reinhardt, G.; Oehme, R.; Welzel, P. Tetrahedron 2003, 59, 5295.

[15] (a) Yang, X. F.; Mague, J. T.; Li, C.-J. J. Org. Chem. 2001, 66, 739.

(b) Kjellgren, J.; Szabó, K. J. Tetrahedron Lett. 2002, 43, 1123.

(c) Cossey, K. N.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 12216.

[16] (a) Durand, A.-C.; Rodriguez, J.; Dulcère, J.-P. Synlett 2000, 731.

(b) Joshi, S. N.; Phalgune, U. D.; Bhawal, B. M.; Deshmukh, A. R. A. S. Tetrahedron Lett. 2003, 44, 1827.

(c) Nicolaou, K. C.; Roecker, A. J.; Monenschein, H.; Guntupalli, P.; Follmann, M. Angew. Chem., Int. Ed. 2003, 42, 3637.

[17] (a) Peng, W. G.; Lee, C.-S. Synlett 2008, 142.

(b) Huang, S. P.; Du, G. Y.; Lee, C.-S. J. Org. Chem. 2011, 76, 6534.

[18] (a) Wang, H.; Zhao, T. J. Nat. Prod. 1985, 48, 796.

(b) Zhao, W.; Ye, Q.; Tan, X.; Jiang, H.; Li, X.; Chen, K.; Kinghorn, A. D. J. Nat. Prod. 2001, 64, 1196.

(c) Gavagnin, M.; Carbone, M.; Nappo, M.; Mollo, E.; Roussis, V.; Cimino, G. Tetrahedron 2005, 61, 617.

[19] Han, Y. J.; Zhu, L. Z.; Gao, Y.; Lee, C.-S. Org. Lett. 2011, 13, 588.

[20] Sun, H. D.; Huang, S. X.; Han, Q. B. Nat. Prod. Rep. 2006, 23, 673.

[21] Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Alloco, J.; A'BasilioTormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J.; Bartizal, K.; Barrett, J.; Schmatz, D. J.; Becker, W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358.

[22] Wang, J.; Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; Colletti, S.; Herath, K.; Cummings, R.; Salazar, O.; Gonzalez, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.; Young, K.; Cully D.; Singh, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7612.

[23] (a) Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 2548.

(b) Manallack, D. T.; Crosby, I. T.; Khakham, Y.; Capuano, B. Curr. Med. Chem. 2008, 15, 705.

(c) Yao, Y.-S.; Yao, Z.-J. Chin. J. Org. Chem. 2008, 28, 1553 (in Chinese).(姚元山, 姚祝军, 有机化学, 2008, 28, 1553.)

(d) Harsh, P.; O’Doherty, G. A. Chemtracts 2009, 22, 31.

(e) Lu, X.; You, Q. Curr. Med. Chem. 2010, 17, 1139.

(f) Palanichamy, K.; Kaliappan, K. P. Chem.-Asian J. 2010, 5, 668.

(g) Nicolaou, K. C.; Chen, J. S. D.; Edmonds, J.; Estrada, A. A. Angew. Chem., Int. Ed. 2009, 48, 660.

(h) Nicolaou, K. C.; Chen, J. S.; Dalby, S. M. Bioorg. Med. Chem. 2009, 17, 2290.

[24] Zhu, L. Z.; Han, Y. J.; Du, G. Y.; Lee, C.-S. Org. Lett. 2013, 15, 524.

[25] Zhu, L. Z.; Zhou, C. S.; Yang, W.; He, S. Z.; Cheng, G. J.; Zhang, X. H.; Lee, C.-S. J. Org. Chem. 2013, 78, 7912.

[26] Yoshimitsu, T.; Nojima, S.; Hashimoto, M.; Tanaka, T. Org. Lett. 2011, 13, 3698.

[27] (a) Hanson, J. R. Nat. Prod. Rep. 1989, 6, 347.

(b) Simmonds, M. S. J.; Blaney, W. M.; Ley, S. V.; Bruno, M.; Savona, G. Phytochemistry 1989, 28, 1069.

(c) Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243.

(d) Tokoroyama, T. J. Synth. Org. Chem. Jpn. 1993, 51, 1164.

(e) Hanson, J. R. Nat. Prod. Rep. 2002, 19, 125.

(f) Rijo, P.; Gaspar-Marques, C.; Simoes, M. S.; Duarte, A.; Apreda-Rojas, M. del-C.; Cano, F. H.; Rodriguez, B. J. Nat. Prod. 2002, 65, 1387.

(g) Salah, M. A.; Bedir, E.; Toyang, N. J.; Khan, I. A.; Harries, M. D.; Wedg, D. E. J. Agric. Food Chem. 2003, 51, 7607.

(h) Hanson, J. R. Nat. Prod. Rep. 2005, 22, 594.

(i) Coll, J.; Tandron, Y. Phytochemistry 2005, 66, 2298.

(j) Tamokou, J. D.; Kuiate, J. R.; Tene, M.; Tane, P. Indian J. Pharmacol. 2009, 41, 60.

(k) Stankovic, M. S.; Curcic, M. G.; Zizic, J. B.; Topuzovic, M. D.; Solujic, S. R.; Markovic, S. D. Int. J. Mol. Sci. 2011, 12, 4190.

[28] (a) Christensen, S. B.; Andersen, A.; Smitt, U. W. Prog. Chem. Org. Nat. Prod. 1997, 71, 129.

(b) Rasmussen, U.; Christensen, S. B.; Sandberg, F. Acta Chem. Suec. 1978, 15, 133.

(c) Kobayashi, M.; Son, B. W.; Kido, M.; Kyogoku, Y.; Kitagawa, I. Chem. Pharm. Bull. 1983, 31, 2160.

[29] (a) Li, W.; Liu, X. Z.; Zhou, X. F.; Lee, C.-S. Org. Lett. 2010, 12, 548.

(b) Liu, X. Z.; Lee, C.-S Org. Lett. 2012, 14, 2886.

[30] (a) Perlmutter, P. Tetrahedron Organic Chemistry Series, Vol. 9, Elsevier Ltd., 2013.

(b) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.

(c) Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron Lett. 1985, 26, 4455.

(d) Hprton, M.; Pattenden, G. J. J. Chem. Soc., Perkin Trans. 1 1984, 811.

文章导航

/