双模式Lewis Acid介导串联环化反应在天然产物全合成中的应用
收稿日期: 2013-07-06
修回日期: 2013-08-09
网络出版日期: 2013-08-16
基金资助
国家自然科学基金(Nos. 20672003, 20972004, 21272012 )资助项目
Applications of Dual-Mode Lewis Acids Induced Cascade Cyclization Reactions in Natural Product Synthesis
Received date: 2013-07-06
Revised date: 2013-08-09
Online published: 2013-08-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 20672003, 20972004, 21272012).
朱礼志 , 杜广延 , 杨炜 , 闵龙 , 刘小卒 , 黄双平 , 韩叶俭 , 李志成 . 双模式Lewis Acid介导串联环化反应在天然产物全合成中的应用[J]. 有机化学, 2013 , 33(10) : 2031 -2045 . DOI: 10.6023/cjoc201307010
This account covers the recent advance of the dual-mode Lewis acid induced cascade cyclization reactions in our group. Taking advantage of the special properties of the dual-mode Lewis acids, three new types of cascade reactions have been developed. Moreover, the applicability of the cascade cyclization reactions was explored through studying the scope of substrates. Finally, these reactions were employed for total syntheses of natural products.
[1] (a) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
(b) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.
(c) Pearson, R. G. J. Am. Chem. Soc. 1988, 110, 7684.
[2] (a) Bunce, R. A. Tetrahedron 1995, 51, 13103.
(b) Tietze, L. F. Chem. Rev. 1996, 96, 115.
(c) Pellissier, H. Tetrahedron 2006, 62, 1619.
(d) Pellissier, H. Tetrahedron 2006, 62, 2143.
(e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
(f) Arns, S.; Barriault, L. Chem. Commun. 2007, 2211.
(g) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.
(h) Wang, Z.; Yu, B.; Cui, Y.; Sun, X.; Bao, W. Chin. J. Chem. 2011, 29, 2769.
(i) Wang, Z.; Yu, B.; Zhang, X.; Sun, X.; Bao, W. Chin. J. Chem. 2011, 29, 2775.
(j) Liu, Z.; Tan, L.; Wu, Q.; Lin, X. Chin. J. Chem. 2012, 30, 2343.
(k) Yin, X.; Zhou, Q.; Dong, L. Chen, Y. Chin. J. Chem. 2012, 30, 2669.
(l) Zhu, L.; Ran, H. Chin. J. Chem. 2013, 31, 111.
[3] (a) Hirota, K; Kitade, Y.; Senda, S. Tetrahedron Lett. 1981, 22, 2409.
(b) Boncel, S.; Maczka, M.; Walczak, K. Z. Tetrahedron 2010, 66, 8450.
(c) Appel, B.; Rotzoll, S.; Kranich, R.; Reinke, H.; Langer, P. Eur. J. Org. Chem. 2006, 16, 3638.
[4] (a) Liu, Y. X.; Lu, K.; Dai, M. J.; Wang, K.; Wu, W. Q.; Chen, J. H.; Yang, Z. Org. Lett. 2007, 9, 805.
(b) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650.
(c) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668.
[5] (a) Conia, J. M.; Le Perchec, P. Synthesis 1975, 1.
(b) Caine, D. In Comprehensive Organic Synthesis, Vol. 3, Eds.: Trost, B. M.; Fleming, I., Pergamon Press, Oxford, 1991, p. 1.
[6] (a) Dénès, F.; Pérez-Luna, A.; Chemla, F. Chem. Rev. 2010, 110, 2366.
(b) Drouin, J.; Boaventura, M. A.; Conia, J.-M. J. Am. Chem. Soc. 1985, 107, 1726.
[7] All the calculations were carried out with the Gaussian 09 package. Geometry optimizations and frequency calculations were performed with the M06 method with BSI (the LANL2DZ basis set and corresponding effective core potentials (ECPs) for elements with atomic number higher than 36, and the 6-31G(d) basis set112 for other atoms). The transition states (TS) were confirmed by frequency calculation and intrinsic reaction coordinate (IRC) calculations. All the TS stationary points were correctly connected to the corresponding species. Vibrational frequency calculations also provide thermal corrections for enthalpies and Gibbs free energies (at 298.15 K and 101 kPa). For reaction energy profile, single point energies were calculated at the M06 level with a larger basis sets BSII (def2-TZVP with ECP for In and 6-311++G(3df,3pd) for other atoms). Solvent effects were taken into account by using the SMD solvation model.
[8] Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.
[9] Tang, Y.; Oppenheimer, J.; Song, Z.; You, L.; Zhang, X.; Hsung, R. P. Tetrahedron 2006, 62, 10785.
[10] (a) Sugano, M.; Sato, A.; Iijima, Y.; Oshima, T.; Furuya, K.; Kuwano, H.; Hata, T.; Hanzawa, H. J. Am. Chem. Soc. 1991, 113, 5463.
(b) Bhat, S. V.; Bajwa, B. S.; Dornauer, H.; de Souza, N. J.; Fehlhaber, H.-W. Tetrahedron Lett. 1977, 33, 1669.
(c) Malakov, P. Y.; Papanov, G. Y.; Spassov, S. L. Phytochemistry 1997, 44, 121.
[11] (a) Hsung, R. P. J. Org. Chem. 1997, 62, 7904.
(b) Seth, P. P.; Chen, D.; Wang, J.; Gao, X.; Totah, N. I. Tetrahedron 2000, 56, 10185.
(c) Chemler, S. R.; Iserloh, U.; Danishefsky, S. J. Org. Lett. 2001, 3, 2949.
(d) Wender, P. A.; Gamber, G. G.; Scanio, M. J. C. Angew. Chem., Int. Ed. 2001, 40, 3895.
(e) Tietze, L. F.; Evers, H.; Töpken, E. Angew. Chem., Int. Ed. 2001, 40, 903.
(f) Génisson, Y.; Tyler, P. C.; Ball, R. G.; Young, R. N. J. Am. Chem. Soc. 2001, 123, 11381.
(g) Rodriguez, R.; Adlington, R. M.; Moses, J. E.; Cowley, A.; Baldwin, J. E. Org. Lett. 2004, 6, 3617.
(h) Cole, K. P.; Hsung, R. P. Chem. Commun. 2005, 5784.
[12] (a) Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131.
(b) Linares-Palomino, P. J.; Salido, S.; Altarejos, J.; Sánchez, A. Tetrahedron Lett. 2003, 44, 6651.
(c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122.
(d) Kumazawa, K.; Ishihara, K.; Yamamoto, H. Org. Lett. 2004, 6, 2551.
(e) Koh, J. H.; Gagné, M. R. Angew. Chem., Int. Ed. 2004, 43, 3459.
(f) Kurdyumov, A. V.; Hsung, R. P. J. Am. Chem. Soc. 2006, 128, 6272.
[13] (a) Dumez, E.; Faure, R.; Dulcère, J.-P. Eur. J. Org. Chem. 2001, 2577.
(b) Lesch, B.; Bräse, S. Angew. Chem., Int. Ed. 2004, 43, 115.
[14] (a) Mi, B.; Maleczka, R. B., Jr. Org. Lett. 2001, 3, 1491.
(b) Boeckman, R. K., Jr.; del Rosario Rico Ferreira, M.; Mitchell, L. H.; Shao, P. J. Am. Chem. Soc. 2002, 124, 190.
(c) Anikin, A.; Maslov, M.; Sieler, J.; Blaurock, S.; Baldamus, J.; Hennig, L.; Findeisen, M.; Reinhardt, G.; Oehme, R.; Welzel, P. Tetrahedron 2003, 59, 5295.
[15] (a) Yang, X. F.; Mague, J. T.; Li, C.-J. J. Org. Chem. 2001, 66, 739.
(b) Kjellgren, J.; Szabó, K. J. Tetrahedron Lett. 2002, 43, 1123.
(c) Cossey, K. N.; Funk, R. L. J. Am. Chem. Soc. 2004, 126, 12216.
[16] (a) Durand, A.-C.; Rodriguez, J.; Dulcère, J.-P. Synlett 2000, 731.
(b) Joshi, S. N.; Phalgune, U. D.; Bhawal, B. M.; Deshmukh, A. R. A. S. Tetrahedron Lett. 2003, 44, 1827.
(c) Nicolaou, K. C.; Roecker, A. J.; Monenschein, H.; Guntupalli, P.; Follmann, M. Angew. Chem., Int. Ed. 2003, 42, 3637.
[17] (a) Peng, W. G.; Lee, C.-S. Synlett 2008, 142.
(b) Huang, S. P.; Du, G. Y.; Lee, C.-S. J. Org. Chem. 2011, 76, 6534.
[18] (a) Wang, H.; Zhao, T. J. Nat. Prod. 1985, 48, 796.
(b) Zhao, W.; Ye, Q.; Tan, X.; Jiang, H.; Li, X.; Chen, K.; Kinghorn, A. D. J. Nat. Prod. 2001, 64, 1196.
(c) Gavagnin, M.; Carbone, M.; Nappo, M.; Mollo, E.; Roussis, V.; Cimino, G. Tetrahedron 2005, 61, 617.
[19] Han, Y. J.; Zhu, L. Z.; Gao, Y.; Lee, C.-S. Org. Lett. 2011, 13, 588.
[20] Sun, H. D.; Huang, S. X.; Han, Q. B. Nat. Prod. Rep. 2006, 23, 673.
[21] Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Alloco, J.; A'BasilioTormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J.; Bartizal, K.; Barrett, J.; Schmatz, D. J.; Becker, W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358.
[22] Wang, J.; Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; Colletti, S.; Herath, K.; Cummings, R.; Salazar, O.; Gonzalez, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.; Young, K.; Cully D.; Singh, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7612.
[23] (a) Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 2548.
(b) Manallack, D. T.; Crosby, I. T.; Khakham, Y.; Capuano, B. Curr. Med. Chem. 2008, 15, 705.
(c) Yao, Y.-S.; Yao, Z.-J. Chin. J. Org. Chem. 2008, 28, 1553 (in Chinese).(姚元山, 姚祝军, 有机化学, 2008, 28, 1553.)
(d) Harsh, P.; O’Doherty, G. A. Chemtracts 2009, 22, 31.
(e) Lu, X.; You, Q. Curr. Med. Chem. 2010, 17, 1139.
(f) Palanichamy, K.; Kaliappan, K. P. Chem.-Asian J. 2010, 5, 668.
(g) Nicolaou, K. C.; Chen, J. S. D.; Edmonds, J.; Estrada, A. A. Angew. Chem., Int. Ed. 2009, 48, 660.
(h) Nicolaou, K. C.; Chen, J. S.; Dalby, S. M. Bioorg. Med. Chem. 2009, 17, 2290.
[24] Zhu, L. Z.; Han, Y. J.; Du, G. Y.; Lee, C.-S. Org. Lett. 2013, 15, 524.
[25] Zhu, L. Z.; Zhou, C. S.; Yang, W.; He, S. Z.; Cheng, G. J.; Zhang, X. H.; Lee, C.-S. J. Org. Chem. 2013, 78, 7912.
[26] Yoshimitsu, T.; Nojima, S.; Hashimoto, M.; Tanaka, T. Org. Lett. 2011, 13, 3698.
[27] (a) Hanson, J. R. Nat. Prod. Rep. 1989, 6, 347.
(b) Simmonds, M. S. J.; Blaney, W. M.; Ley, S. V.; Bruno, M.; Savona, G. Phytochemistry 1989, 28, 1069.
(c) Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243.
(d) Tokoroyama, T. J. Synth. Org. Chem. Jpn. 1993, 51, 1164.
(e) Hanson, J. R. Nat. Prod. Rep. 2002, 19, 125.
(f) Rijo, P.; Gaspar-Marques, C.; Simoes, M. S.; Duarte, A.; Apreda-Rojas, M. del-C.; Cano, F. H.; Rodriguez, B. J. Nat. Prod. 2002, 65, 1387.
(g) Salah, M. A.; Bedir, E.; Toyang, N. J.; Khan, I. A.; Harries, M. D.; Wedg, D. E. J. Agric. Food Chem. 2003, 51, 7607.
(h) Hanson, J. R. Nat. Prod. Rep. 2005, 22, 594.
(i) Coll, J.; Tandron, Y. Phytochemistry 2005, 66, 2298.
(j) Tamokou, J. D.; Kuiate, J. R.; Tene, M.; Tane, P. Indian J. Pharmacol. 2009, 41, 60.
(k) Stankovic, M. S.; Curcic, M. G.; Zizic, J. B.; Topuzovic, M. D.; Solujic, S. R.; Markovic, S. D. Int. J. Mol. Sci. 2011, 12, 4190.
[28] (a) Christensen, S. B.; Andersen, A.; Smitt, U. W. Prog. Chem. Org. Nat. Prod. 1997, 71, 129.
(b) Rasmussen, U.; Christensen, S. B.; Sandberg, F. Acta Chem. Suec. 1978, 15, 133.
(c) Kobayashi, M.; Son, B. W.; Kido, M.; Kyogoku, Y.; Kitagawa, I. Chem. Pharm. Bull. 1983, 31, 2160.
[29] (a) Li, W.; Liu, X. Z.; Zhou, X. F.; Lee, C.-S. Org. Lett. 2010, 12, 548.
(b) Liu, X. Z.; Lee, C.-S Org. Lett. 2012, 14, 2886.
[30] (a) Perlmutter, P. Tetrahedron Organic Chemistry Series, Vol. 9, Elsevier Ltd., 2013.
(b) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(c) Auvray, P.; Knochel, P.; Normant, J. F. Tetrahedron Lett. 1985, 26, 4455.
(d) Hprton, M.; Pattenden, G. J. J. Chem. Soc., Perkin Trans. 1 1984, 811.
/
〈 |
|
〉 |