磺酰胺为烷基化试剂高选择性合成多取代烯烃和2,3-二氢茚衍生物的方法
收稿日期: 2015-04-15
修回日期: 2015-06-18
网络出版日期: 2015-08-25
High Regio- and Stereo-selective Synthesis of Polysubstituted Alkenes and Indane Derivatives Using N-Benzylic Sulfonamides as Alkylating Agents
Received date: 2015-04-15
Revised date: 2015-06-18
Online published: 2015-08-25
在质子酸H2SO4催化下, 含β氢醇与磺酰胺反应可高选择性地得到三取代烯烃和2,3-二氢茚衍生物. 含β氢醇酸性条件下脱水后与磺酰胺发生偶联, 可以选择性地合成热力学稳定产物Z-多取代烯烃; 两者发生[3+2]环加成反应, 则可高选择性地得到2,3-二氢茚衍生物.
关键词: 醇; 磺酰胺; 2,3-二氢茚衍生物; 立体选择性; [3+2]环加成
李海花 . 磺酰胺为烷基化试剂高选择性合成多取代烯烃和2,3-二氢茚衍生物的方法[J]. 有机化学, 2015 , 35(12) : 2568 -2574 . DOI: 10.6023/cjoc201504022
The reaction of alcohols with β-hydrogen and N-benzylic sulfonamide has been developed in the presence of H2SO4 for the synthesis of polysubstituted alkenes and indane derivatives with high stereoselectivity. Alcohol with β-hydrogen dehydrates and then couples with N-benzylic sulfonamide in the acidic conditions to selectively synthesize thermodynamic stability product Z-multisubstituted alkenes, which then lead to a [3+2] annulation reaction to selectively afford the indane derivatives.
[1] Olah, A.; Krishnamurti, R.; Surya, G. K. Comprehensive Organic Synthesis, Eds.: Trost, B. M.; Fleming, I., Pergamon Press, Oxford, 1991, 3, 293.
[2] Gu, Y.; Tian, S.-K. Synlett 2013, 1170.
[3] (a) He, Q. L.; Sun, F. L.; Zheng, X. J.; You, S. L. Synlett 2009, 1111. (b) Sun, F. L.; Zheng, X. J.; Gu, Q.; He, Q. L.; You, S. L. Eur. J. Org. Chem. 2010, 47.
[4] Liu, J.; Wang, L.; Zheng, X.; Wang, A.; Zhu, M.; Yu, J.; Shen, Q. Tetrahedron Lett. 2012, 53, 1843.
[5] Liu, C.-R.; Li, M.-B.; Yang, C.-F.; Tian, S.-K. Chem. Eur. J. 2009, 15, 793.
[6] Liu, C.-R.; Li, M.-B.; Cheng, D.-J.; Yang, C.-F.; Tian, S.-K. Org. Lett. 2009, 11, 2543.
[7] Yang, C.-F.; Wang, J.-Y.; Tian, S.-K. Chem. Commun. 2011, 47, 8343.
[8] Li, M.-B.; Tang, X.-L.; Tian, S.-K. Adv. Synth. Catal. 2011, 353, 1980.
[9] Yang, B.-L.; Tian, S.-K. Chem. Commmun. 2010, 46, 6180.
[10] (a) Liu, C.-R.; Yang, F.-L.; Jin, Y.-Z.; Ma, X.-T.; Cheng, D.-J.; Li, N.; Tian, S.-K. Org. Lett. 2010, 12, 3832. (b) Liu, C.-R.; Wang, T.-T.; Qi, Q.-B.; Tian, S.-K. Chem. Commun. 2012, 48, 10913.
[11] Weng, Z. T.; Li, Y.; Tian, S.-K. J. Org. Chem. 2011, 76, 8095.
[12] Li, H.-H.; Zhang, X.; Jin, Y.-H.; Tian, S.-K. Asian J. Org. Chem. 2013, 2, 290.
[13] (a) Wolovsky, R.; Maoz, N. J. Org. Chem. 1973, 38, 4040. (b) Ciminale, F.; Lopez, L.; Paradiso, V.; Nacci, A. Tetrahedron 1996, 52, 13971. (c) Ciminale, F.; Lopez, L.; Farinola, G. M.; Sportelli, S.; Nacci, A. Eur. J. Org. Chem. 2002, 3850.
[14] Li, H.-H. Chin. Chem. Lett. 2015, 26, 320.
[15] Li, H.-H.; Jin, Y.-H.; Wang, J.-Q.; Tian, S.-K. Org. Biomol. Chem. 2009, 7, 3219.
[16] Antipin, I. S.; Gareyev, R. F.; Vedernikov, A. N.; Konovalov, A. I. J. Phys. Org. Chem. 1994, 7, 181.
[17] Elmaleh, D.; Patai, S.; Rappoport, Z. J. Chem. Soc. C 1971, 3100.
[18] Marcuzzi, F.; Melloni, G.; Modena, G. J. Org. Chem. 1979, 44, 3022.
[19] Farnia, G.; Marcuzzi, F.; Melloni, G.; Sandona, G. J. Am. Chem. Soc. 1984, 106, 6503.
[20] Blum-Bergmann, O. J. Chem. Soc. 1938, 723.
/
〈 |
|
〉 |