研究论文

PhI(OAc)2/I2介导下氮烷氧基酰胺的氧化自身偶联成酯的方法

  • 段希焱 ,
  • 段希斌 ,
  • 杨坤 ,
  • 王志成 ,
  • 张璐 ,
  • 佟悦 ,
  • 刘浩哲 ,
  • 杜珂 ,
  • 唐榕泽
展开
  • a 河南科技大学化工与制药学院 洛阳 471023;
    b 郑州大学附属郑州中心医院 郑州 450007

收稿日期: 2015-06-18

  修回日期: 2015-07-24

  网络出版日期: 2015-08-26

基金资助

河南科技大学博士科研启动项目(No. 4008-13480042).

PhI(OAc)2/I2-Mediated Oxidative Homocoupling of N-Alkoxyamides: An Approach to Esters

  • Duan Xiyan ,
  • Duan Xibin ,
  • Yang Kun ,
  • Wang Zhicheng ,
  • Zhang Lua ,
  • Tong Yue ,
  • Liu Haozhe ,
  • Du Ke ,
  • Tang Rongze
Expand
  • a School of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023;
    b Zhengzhou Certral Hospital Affiliated to Zhengzhou University, Zhengzhou 450007

Received date: 2015-06-18

  Revised date: 2015-07-24

  Online published: 2015-08-26

Supported by

Project supported by the Students Research Training Program of Henan University of Science and Technology (No. 4008-13480042).

摘要

一系列取代的氮烷氧基酰胺衍生物能够在PhI(OAc)2/I2催化下转化成相应的酯. 这个新颖的合成策略能够有效地合成酯类化合物. 该反应具有原料易得, 反应温和, 底物范围广, 非过渡金属催化等特点.

本文引用格式

段希焱 , 段希斌 , 杨坤 , 王志成 , 张璐 , 佟悦 , 刘浩哲 , 杜珂 , 唐榕泽 . PhI(OAc)2/I2介导下氮烷氧基酰胺的氧化自身偶联成酯的方法[J]. 有机化学, 2015 , 35(12) : 2552 -2558 . DOI: 10.6023/cjoc201506024

Abstract

A variety of substituted N-alkoxyamides derivatives were found to be converted to the corresponding esters mediated by PhI(OAc)2/I2. This novel strategy allows for an efficient synthesis of esters and is highlighted by appealing features such as readily available of the starting material, mild reaction condition, wide substrate scope and transition-metal-free characteristics.

参考文献

[1] (a) Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073. (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (c) Zhdankin, V. V. J. Org. Chem. 2011, 76, 1185. (d) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323. (e) Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou Z.; Li, M. Chem. Commun. 2013, 49, 6752. (f) Samanta, R.; Matcha, K.; Antonchick, A. P. Eur. J. Org. Chem. 2013, 5769. (g) Zheng, Z.; Zhang-Negrerie, D. Du, Y.; Zhao, K. Sci. China Chem. 2014, 57, 189. (h) Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q. Org. Lett. 2014, 16, 2822. (i) Chen, J.; Qu, H.; Peng, J.; Chen, C. Chin. J. Org. Chem. 2015, 35, 937 (in Chinese). (陈静, 曲红梅, 彭静, 陈超, 有机化学, 2015, 35, 937.)
[2] Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
[3] Hossain, M. D.; Kitamura, T. J. Org. Chem. 2005, 70, 6984.
[4] (a) Souto, J. A.; Becker, P.; Iglesias, Á.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 15505. (b) Tian, J.-S.; Ng, K. W. J.; Wong, J.-R.; Loh, T.-P. Angew. Chem., Int. Ed. 2012, 51, 9105. (c) Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2012, 48, 979. (d) Zheng, Y.; Li, X.; Ren C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2012, 77, 10353.
[5] (a) Tschaen, B. A.; Schmink, J. R.; Molander, G. A. Org. Lett. 2013, 15, 500. (b) Liu, C.; Tang, S.; Zheng, L.; Liu, D.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 5662. (c) Xin, Z.; Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. Org. Lett. 2012, 14, 284. (d) Nahmany, M.; Melman, A. Org. Lett. 2001, 3, 3733. (e) Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712. (f) Masamune, S.; Hayase, Y.; Schilling, W.; Chan, W. K.; Bates, G. S. J. Am. Chem. Soc. 1977, 99, 6756. (g) Takimoto, S.; Inanaga, J.; Katsuki, T.; Yamagughi, M. Bull. Chem. Soc. Jpn. 1976, 49, 2335. (h) Rossi, R. A.; de Rossi, R. H. J. Org. Chem. 1974, 39, 855. (i) Kaiser, E. M.; Woodruff, R. A. J. Org. Chem. 1970, 35, 1198. (j) Parish, R. C.; Stock, L. M. J. Org. Chem. 1965, 30, 927. (k) Zhu, Y.; Wei, Y. RSC Adv. 2013, 3, 13668. (l) Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542.
[6] Zhang, N.; Yang, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2013, 78, 8705.
[7] Yu, D.; Azambuja, F.; Glorius, F. Angew. Chem., Int. Ed. 2014, 53, 2754.
[8] Shi, Z.; Grohmann, C.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 5393.
[9] Glover, S. A.; Mo, G. J. Chem. Soc., Perkin Trans. 2 2002, 1728.
[10] Almeida, M. V. De; Barton, D. H. R.; Bytheway, I.; Ferriera, J. A.; Hall, M. B.; Liu, W.; Taylor, D. K.; Thomson, L. J. Am. Chem. Soc. 1995, 117, 4870.
[11] Crawford, R. J.; Raap, R. J. Org. Chem. 1963, 28, 2419.
[12] Cooley, J. H.; Mosher, M. W.; Khan, M. A. J. Am. Chem. Soc. 1968, 90, 1867.
[13] Glover, S. A.; Mo, G.; Rauk, A. Tetrahedron 1999, 5, 3413.
[14] (a) Liu, H.; Wang, X.; Gu, Y. Org. Biomol. Chem. 2011, 9, 1614. (b) Chi, Y.; Zhang, W.-X.; Xi, Z. Org. Lett. 2014, 16, 6274.
[15] Selected references for hypervalent iodine-mediated oxidative homocoupling of N-alkoxyamides: (a) Yang, C.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2015, 80, 5310. (b) Li, X.; Yang, L.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2014, 79, 955.
[16] Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, J. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326.
[17] Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
[18] Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
[19] Okiko, M.; Atsuko, N.; Ichiya, N.; Keiichi, A.; Kimio, O.; Takeaki, N. J. Org. Chem., 2000, 65, 6925.
[20] Jiang, Q.; Zhao, A.; Xu, B.; Jia, J.; Liu, X.; Guo, C. J. Org. Chem. 2014, 79, 2709.
[21] Liu, H.; Shi, G.; Pan, S.; Jiang, Y.; Zhang, Y. Org. Lett. 2013, 15, 4098.
[22] Molander, G. A.; Traister, K. M.; Barcellos, T. J. Org. Chem. 2013, 78, 4123.
[23] Li, X.; Zou, D.; Zhu, H.; Wang, Y.; Li, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 1836.
[24] Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542.

文章导航

/