PhI(OAc)2/I2介导下氮烷氧基酰胺的氧化自身偶联成酯的方法
收稿日期: 2015-06-18
修回日期: 2015-07-24
网络出版日期: 2015-08-26
基金资助
河南科技大学博士科研启动项目(No. 4008-13480042).
PhI(OAc)2/I2-Mediated Oxidative Homocoupling of N-Alkoxyamides: An Approach to Esters
Received date: 2015-06-18
Revised date: 2015-07-24
Online published: 2015-08-26
Supported by
Project supported by the Students Research Training Program of Henan University of Science and Technology (No. 4008-13480042).
段希焱 , 段希斌 , 杨坤 , 王志成 , 张璐 , 佟悦 , 刘浩哲 , 杜珂 , 唐榕泽 . PhI(OAc)2/I2介导下氮烷氧基酰胺的氧化自身偶联成酯的方法[J]. 有机化学, 2015 , 35(12) : 2552 -2558 . DOI: 10.6023/cjoc201506024
A variety of substituted N-alkoxyamides derivatives were found to be converted to the corresponding esters mediated by PhI(OAc)2/I2. This novel strategy allows for an efficient synthesis of esters and is highlighted by appealing features such as readily available of the starting material, mild reaction condition, wide substrate scope and transition-metal-free characteristics.
Key words: hypervalent iodine; N-alkoxyamides; ester; oxidative coupling
[1] (a) Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073. (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (c) Zhdankin, V. V. J. Org. Chem. 2011, 76, 1185. (d) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323. (e) Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou Z.; Li, M. Chem. Commun. 2013, 49, 6752. (f) Samanta, R.; Matcha, K.; Antonchick, A. P. Eur. J. Org. Chem. 2013, 5769. (g) Zheng, Z.; Zhang-Negrerie, D. Du, Y.; Zhao, K. Sci. China Chem. 2014, 57, 189. (h) Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q. Org. Lett. 2014, 16, 2822. (i) Chen, J.; Qu, H.; Peng, J.; Chen, C. Chin. J. Org. Chem. 2015, 35, 937 (in Chinese). (陈静, 曲红梅, 彭静, 陈超, 有机化学, 2015, 35, 937.)
[2] Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
[3] Hossain, M. D.; Kitamura, T. J. Org. Chem. 2005, 70, 6984.
[4] (a) Souto, J. A.; Becker, P.; Iglesias, Á.; Muñiz, K. J. Am. Chem. Soc. 2012, 134, 15505. (b) Tian, J.-S.; Ng, K. W. J.; Wong, J.-R.; Loh, T.-P. Angew. Chem., Int. Ed. 2012, 51, 9105. (c) Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2012, 48, 979. (d) Zheng, Y.; Li, X.; Ren C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2012, 77, 10353.
[5] (a) Tschaen, B. A.; Schmink, J. R.; Molander, G. A. Org. Lett. 2013, 15, 500. (b) Liu, C.; Tang, S.; Zheng, L.; Liu, D.; Zhang, H.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 5662. (c) Xin, Z.; Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. Org. Lett. 2012, 14, 284. (d) Nahmany, M.; Melman, A. Org. Lett. 2001, 3, 3733. (e) Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712. (f) Masamune, S.; Hayase, Y.; Schilling, W.; Chan, W. K.; Bates, G. S. J. Am. Chem. Soc. 1977, 99, 6756. (g) Takimoto, S.; Inanaga, J.; Katsuki, T.; Yamagughi, M. Bull. Chem. Soc. Jpn. 1976, 49, 2335. (h) Rossi, R. A.; de Rossi, R. H. J. Org. Chem. 1974, 39, 855. (i) Kaiser, E. M.; Woodruff, R. A. J. Org. Chem. 1970, 35, 1198. (j) Parish, R. C.; Stock, L. M. J. Org. Chem. 1965, 30, 927. (k) Zhu, Y.; Wei, Y. RSC Adv. 2013, 3, 13668. (l) Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542.
[6] Zhang, N.; Yang, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2013, 78, 8705.
[7] Yu, D.; Azambuja, F.; Glorius, F. Angew. Chem., Int. Ed. 2014, 53, 2754.
[8] Shi, Z.; Grohmann, C.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 5393.
[9] Glover, S. A.; Mo, G. J. Chem. Soc., Perkin Trans. 2 2002, 1728.
[10] Almeida, M. V. De; Barton, D. H. R.; Bytheway, I.; Ferriera, J. A.; Hall, M. B.; Liu, W.; Taylor, D. K.; Thomson, L. J. Am. Chem. Soc. 1995, 117, 4870.
[11] Crawford, R. J.; Raap, R. J. Org. Chem. 1963, 28, 2419.
[12] Cooley, J. H.; Mosher, M. W.; Khan, M. A. J. Am. Chem. Soc. 1968, 90, 1867.
[13] Glover, S. A.; Mo, G.; Rauk, A. Tetrahedron 1999, 5, 3413.
[14] (a) Liu, H.; Wang, X.; Gu, Y. Org. Biomol. Chem. 2011, 9, 1614. (b) Chi, Y.; Zhang, W.-X.; Xi, Z. Org. Lett. 2014, 16, 6274.
[15] Selected references for hypervalent iodine-mediated oxidative homocoupling of N-alkoxyamides: (a) Yang, C.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2015, 80, 5310. (b) Li, X.; Yang, L.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2014, 79, 955.
[16] Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, J. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326.
[17] Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
[18] Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
[19] Okiko, M.; Atsuko, N.; Ichiya, N.; Keiichi, A.; Kimio, O.; Takeaki, N. J. Org. Chem., 2000, 65, 6925.
[20] Jiang, Q.; Zhao, A.; Xu, B.; Jia, J.; Liu, X.; Guo, C. J. Org. Chem. 2014, 79, 2709.
[21] Liu, H.; Shi, G.; Pan, S.; Jiang, Y.; Zhang, Y. Org. Lett. 2013, 15, 4098.
[22] Molander, G. A.; Traister, K. M.; Barcellos, T. J. Org. Chem. 2013, 78, 4123.
[23] Li, X.; Zou, D.; Zhu, H.; Wang, Y.; Li, J.; Wu, Y.; Wu, Y. Org. Lett. 2014, 16, 1836.
[24] Zhang, H.; Shi, R.; Ding, A.; Lu, L.; Chen, B.; Lei, A. Angew. Chem., Int. Ed. 2012, 51, 12542.
/
〈 |
|
〉 |