综述与进展

第VIII族过渡金属配合物催化羰基化合物硅氢化的反应机理

  • 秦晓飞 ,
  • 刘晓燕 ,
  • 郭彩红 ,
  • 武海顺
展开
  • 山西师范大学化学与材料科学学院 临汾 041004

收稿日期: 2015-07-29

  修回日期: 2015-09-21

  网络出版日期: 2015-09-30

基金资助

国家自然科学基金(No. 21203115)和山西省回国留学人员科研(No. 2012-057)资助项目.

Reaction Mechanisms of Carbonyl Compounds Hydrosilylation Catalyzed by Group VIII Transition Metal Complexes

  • Qin Xiaofei ,
  • Liu Xiaoyan ,
  • Guo Caihong ,
  • Wu Haishun
Expand
  • School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004

Received date: 2015-07-29

  Revised date: 2015-09-21

  Online published: 2015-09-30

Supported by

Project supported by the National Natural Science Foundation of China (No. 21203115) and the Shanxi Scholarship Council of China (No. 2012-057)

摘要

硅氢加成是有机硅化学中的重要反应, 多种过渡金属包括铁、铑、钌、钯、铂等的配合物对不饱和化合物的硅氢加成均有高的催化活性, 尤其在羰基化合物的硅氢化反应中应用广泛. 由于有机硅烷可以为包含一个Si—H键的叔硅烷、二个Si—H键的仲硅烷或三个Si—H键的伯硅烷, 羰基化合物的硅氢化产物会随硅烷和过渡金属配合物的不同而出现差异. 指出了羰基化合物硅氢加成反应的几种机理及其在不同金属配合物和硅烷参与反应时的适用性. 重点讨论了Rh, Ru, Fe, Ir反应机理类型和影响条件. 此外, 描述了部分主要中间体和过渡态以及相关的能量参数, 并对第VIII族过渡金属配合物催化羰基化合物硅氢化反应机理的研究进行了展望.

本文引用格式

秦晓飞 , 刘晓燕 , 郭彩红 , 武海顺 . 第VIII族过渡金属配合物催化羰基化合物硅氢化的反应机理[J]. 有机化学, 2016 , 36(1) : 60 -71 . DOI: 10.6023/cjoc201507037

Abstract

Hydrosilylation is an important reaction widely used in the silicone industries. Especially, the hydrosilylation of carbonyl compounds is of great value in synthetic organic chemistry. A variety of transition-metal complexes, such as iron, palladium, rhodium, ruthenium, platinum, etc., are now known to show catalytic activity in the hydrosilylation of ketones. Since organohydrosilanes may involve one, two, or three Si—H bonds in tertiary, secondary or primary silanes, respectively. The various types of compounds were produced in their reactions with the unsaturated substrates catalyzed by transition-metal complexes. In this paper, several reaction mechanisms of carbonyl compounds hydrosilylation catalyzed by group VIII transition metal complexes under different reaction conditions are mainly introduced. In particular, the new developments on mechanistic pathways for Rh, Ru, Fe and Ir catalytic systems from the type of reaction mechanism and the influence of reaction conditions are highlighted. In addition, some key intermediates and transition states, and their energetics are presented. Not only a summary of previous work is given, but also some ideas and inspirations are provided for future research.

参考文献

[1] Levin, E.; Ivry, E.; Diesendruck, C. E.; Lemcoff, N. G. Chem. Rev. 2015, 115, 4607.
[2] Chakraborty, S.; Bhattacharya, P.; Dai, H.; Guan, H. Acc.Chem. Res. 2015, 48, 1995.
[3] Xu, D.-P.; Xiao, W.-J.; Peng, J.-J.; Li, J.-Y.; Bai, Y. Chin. J. Org. Chem. 2014, 34, 2195 (in Chinese).(徐大鹏, 肖文军, 彭家建, 厉嘉云, 白赢, 有机化学, 2014, 34, 2195.)
[4] Wile, B. M.; Stradiotto, M. Chem.Commun. 2006, 39, 4104.
[5] Carpentier, J-F.; Bette, V. Curr. Org. Chem. 2002, 6, 913.
[6] Bauer, I.; Knölker, H-J. Chem.Rev. 2015, 115, 3170.
[7] Abbina, S.; Bian S.; Oian C.; Du, G. ACS Catal. 2013, 3, 678.
[8] Marciniec, B.; Guliński, J. Organomet. Chem. 1993, 446, 15.
[9] Bleith, T.; Wadepohl, H.; Gade L. H. J. Am. Chem. Soc. 2015, 137, 2456.
[10] Sommer, L. H.; Pietrusza, E. W.; Whitmore, F. C. J. Am. Chem. Soc. 1947, 69, 188.
[11] Ojima, I.; Nihonyanagi, M.; Nagai, Y. J. Chem. Soc., Chem. Commun. 1972, 16, 938a.
[12] Lee, S.; Lim, C. W.; Song, C. E.; Kim, I. O. Tetrahedron: Asymmetry 1997, 8, 4027.
[13] Reyes, C.; Prock, A.; Giering, W. P. J. Organomet. Chem. 2003, 671, 13.
[14] Sawamura, M. Kuwano, R. Ito, Y. Angew. Chem. 1994, 106, 92.
[15] Ochida, A.; Sawamura, M. Chem. Asian J. 2007, 2, 609.
[16] Niyomura, O.; Iwasawa, T.; Sawada, N.; Tokunaga, M.; Obora, Y.; Tsuji, Y. Organometallics 2005, 24, 3468.
[17] Nonnenmacher, M.; Kunz, D.; Rominger, F. Organometallics 2008, 27, 1561.
[18] Liu, L.; Wang, F.; Shi, M. Organmetsllics 2009, 28, 4416.
[19] Poyatos, M.; Maisse-François, A.; Bellemin-Laponnaz, S.; Gade, L. H. Organometallics 2006, 25, 2634.
[20] Lugovoi, Y. M.; Tarasova, N. P.; Bourgeois, G.; Bryantseva, N. V.; Kostikov, V. V.; Filliatre, C.; Shostenko, A. G. React.Kinet. Catal. Lett. 1991, 43, 177.
[21] Ballestri, M.; Chatgilialoglu, C.; Clark, K. B.; Griller, D.; Giese, B.; Kopping, B. J. Org. Chem. 1991, 56, 678.
[22] Barton, D. H. R.; Blundell, P.; Dorchak, J.; Jang, D. O.; Jaszberenyi, J. C. Tetrahedron 1991, 47, 8969.
[23] Shen, Z.; Khan, H. A.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2916.
[24] Hamasaka, G.; Kawamorita, S.; Ochida, A.; Akiyama, R.; Hara, K.; Fukuoka, A.; Asakura, K.; Chun, W. J.; Ohmiya, H.; Sawamura, M. Organometallics2008, 27, 6495.
[25] Rubio, M.; Campos, J.; Carmona, E. Org. Lett. 2011, 13, 5236.
[26] Ojima, I.; Nihonyanagi, M.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Nakatsugawa, K.; Nagai, Y. J. Organomet.Chem. 1975, 94, 449.
[27] Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16.
[28] Kolb, I.; Hetflejš, J. Collect. Czech. Chem. Commun. 1980, 45, 2808.
[29] Reyes, C.; Prock, A.; Giering, W. P. Organometallics 2002, 21, 546.
[30] Ojima, I.; Kogure, T.; Nagai, Y. Tetrahedron Lett. 1972, 13, 5035.
[31] Ojima, I.; Kogure, T. Organometallics1982, 1, 1390.
[32] Zheng, G. Z.; Chan, T. H. Organometallics 1995, 14, 70.
[33] Kolb, I.; Hetflejš, J. Collect. Czech. Chem. Commun.1980, 45, 2224.
[34] Goikhman, R.; Milstein, D. Chem. Eur. J. 2005, 11, 2983.
[35] Gade, L. H.; César, V.; Bellemin-Laponnaz, S. Angew. Chem., Int. Ed. 2004, 43, 1014.
[36] Schneider, N.; Finger, M.; Haferkemper, C.; Bellemin-Laponnaz, S.; Hofmann, P.; Gade, L. H. Angew. Chem., Int. Ed. 2009, 48, 1609.
[37] Schneider, N.; Finger, M.; Haferkemper, C.; Bellemin-Laponnaz, S.; Hofmann, P.; Gade, L. H. Chem. Eur. J. 2009, 15, 11515.
[38] Gigler, P.; Bechlars, B.; Herrmann, W. A.; Kühn, F. E. J. Am. Chem. Soc. 2011, 133, 1589.
[39] Riener, K.; Högerl, M. P.; Gigler, P.; Kühn, F. E. ACSCatal. 2012, 2, 613.
[40] Comte, V.; Balan, C.; Le, Gendre. P.; Moïse, C. Chem. Commun. 2007, 21, 713.
[41] Eaborn, C.; Odell, K.; Pidcock, A. J. Organomet. Chem. 1973, 63, 93
[42] Corriu, R. J. P.; Moreau, J. J. E. J. Chem. Soc., Chem. Commun. 1973, 38.
[43] Matsumoto, H.; Hoshino, Y.; Nagai, Y. Bull. Chem. Soc. Jpn. 1981, 54, 1279.
[44] Nagashima, H.; Suzuki, A.; Iura, T.; Ryu, K.; Matsubara, K. Organometallics2000, 19, 3579.
[45] Semmelhack, M. F.; Misra, R. N. J. Org. Chem. 1982, 47, 2469.
[46] Maifeld, S. V.; Miller, R. L.; Lee, D. Tetrahedron Lett. 2002, 43, 6363.
[47] Song, C.; Ma, C.; Ma, Y.; Feng, W.; Ma, S.; Chai, Q.; Andrus, M. B. Tetrahedron Lett. 2005, 46, 3241.
[48] Ochiai, M.; Hashimoto, H.; Tobita, H. Organometallics 2012, 31, 527.
[49] Xie, H.; Lin, Z. Organometallics 2014, 33, 892.
[50] Gutsulyak, D. V.; Vyboishchikov, S. F.; Nikonov, G. I. J. Am. Chem. Soc. 2010, 132, 5950.
[51] Yang, Y.-F.; Chung, L. W.; Zhang, X.; Houk, K. N.; Wu, Y.-D. J. Org. Chem. 2014, 79, 8856.
[52] Wang, J.; Huang, L.; Yang, X.; Wei, H. Organometallics 2015, 34, 212.
[53] Brunner, H.; Fisch, K. Angew. Chem., Int. Ed. Engl. 1990, 29, 1131.
[54] Brunner, H.; Fisch, K. J. Organomet. Chem. 1991, 412, C11.
[55] Nishiyama, H.; Furuta, A. Chem. Commum. 2007, 760.
[56] Muraoka, T.; Shimizu, Y.; Kobayashi, H.; Ueno, K.; Ogino, H. Organometallics 2010, 29, 5423.
[57] Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440.
[58] Li, H.; Misal, Castro. L. C.; Zheng, J.; Roisnel, T.; Dorcet, V.; Sortais, J-B.; Darcel, C. Angew. Chem., Int. Ed. 2013, 52, 8045.
[59] Kennedy-Smith, J. J.; Nolin, K. A.; Gunterman, H. P.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 4056.
[60] Chung, L. W.; Lee, H. G.; Lin, Z.; Wu, Y.-D. J. Org. Chem. 2006, 71, 6000.
[61] Noronha, R. G.; Costa, P. J.; Romão, C. C.; Calhorda, M. J.; Fernandes, A. C. Organometallics 2009, 28, 6206.
[62] Costa, P. J.; Romão, C. C.; Fernandes, A. C.; Royo, B.; Reis, P. M.; Calhorda, M. J. Chem. Eur. J. 2007, 13, 3934.
[63] Khalimon, A. Y.; Ignatov, S. K.; Simionescu, R.; Kuzmina, L. G.; Howard, J. A. K.; Nikonov, G. I. Inorg. Chem. 2012, 51, 754.
[64] Khalimon, A. Y.; Shirobokov, O. G.; Peterson, E.; Simionescu, R.; Kuzmina, L. G.; Howard, J. A. K. Nikonov, G. I. Inorg.Chem. 2012, 51, 4300.
[65] Shirobokov, O. G.; Kuzmina, L. G.; Nikonov, G. I. J. Am. Chem. Soc. 2011, 133, 6487.
[66] Bullock, R. M. Chem. Eur. J. 2004, 10, 2366.
[67] Bhattacharya, P.; Krause, J. A.; Guan, H. Organometallics2011, 30, 4720.
[68] Wang, W.; Gu, P.; Wang, Y.; Wei, H. Organometallics 2014, 33, 847.
[69] Apple, D. C.; Brady, K. A.; Chance, J. M.; Heard, N. E.; Nile, T. A. J. Mol. Catal. 1985, 29, 55.
[70] Yang, J.; White, P. S.; Schauer, C. K.; Brookhart, M. Angew.Chem., Int. Ed. 2008, 47, 4141.
[71] Park, S.; Brookhart, M. Organometallics2010, 29, 6057.
[72] Cheng, C.; Brookhart, M. Angew. Chem., Int. Ed. 2012, 51, 9422.

文章导航

/