研究论文

二乙酸碘苯促进芳基酮烯醇硅醚的氯化反应

  • 陈小伟 ,
  • 种思颖 ,
  • 杜刚刚 ,
  • 黄丹凤 ,
  • 王克虎 ,
  • 苏瀛鹏 ,
  • 胡雨来
展开
  • 西北师范大学化学化工学院 兰州 730070

收稿日期: 2015-11-19

  修回日期: 2015-12-30

  网络出版日期: 2016-02-01

基金资助

国家自然科学基金(Nos.21362033,21502154)资助项目.

Diacetoxyiodobenzene Promoted Chlorination of Silyl Enol Ether of Aryl Ketones

  • Chen Xiaowei ,
  • Chong Siying ,
  • Du Ganggang ,
  • Huang Danfeng ,
  • Wang Kehu ,
  • Su Yingpeng ,
  • Hu Yulai
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Received date: 2015-11-19

  Revised date: 2015-12-30

  Online published: 2016-02-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21362033, 21502154).

摘要

利用三甲基氯硅烷作为氯源,在二乙酸碘苯促进下,以芳基酮衍生的烯醇硅醚作为底物,合成了一系列α-氯代芳基酮.该方法反应条件温和,以中等至较好收率得到氯代芳基酮.若使用三甲基溴硅烷作为溴源,该方法还能用来制备α-溴代芳基酮.

本文引用格式

陈小伟 , 种思颖 , 杜刚刚 , 黄丹凤 , 王克虎 , 苏瀛鹏 , 胡雨来 . 二乙酸碘苯促进芳基酮烯醇硅醚的氯化反应[J]. 有机化学, 2016 , 36(5) : 1028 -1033 . DOI: 10.6023/cjoc201511041

Abstract

A series of α-chloroketones were obtained from silyl enol ethers of aryl ketones using trimethylchlorosilane as chlorine source and diacetoxyiodobenzene as promoter. The reaction occurs under mild condition yielding the product in moderate to good yields, and has the potential possibility for the synthesis of α-bromoketone by using trimethyl bromosilane as bromine source.

参考文献

[1] (a) De Kimpe, N.; Verhé, R.; Patai, S. The Chemistry of α-haloketones, α-haloaldehydes, and α-haloimines, John Wiley & Sons Inc, Chichester, 1988.
(b) Yasuda, M.; Tsuji, S.; Shigeyoshi, Y.; Baba, A. J. Am. Chem. Soc. 2002, 124, 7440.
(c) Hamada, T.; Torii, T.; Izawa, K.; Ikariya, T. Tetrahedron 2004, 60, 7411.
(d) Adamo, M. F. A.; Adlington, R. M.; Baldwin, J. E.; Day, A. L. Tetrahedron 2004, 60, 841.
(e) Tanis, S. P.; Evans, B. R.; Nieman, J. A.; Parker, T. T.; Taylor, W. D.; Heasley, S. E.; Herrinton, P. M.; Perrault, W. R.; Hohler, R. A.; Dolak, L. A.; Hester, M. R.; Seest, E. P. Tetrahedron: Asymmetry 2006, 17, 2154.
(f) Kojima, S.; Suzuki, M.; Watanabe, A.; Ohkata, K. Tetrahedron Lett. 2006, 47, 9061.
(g) Wei, Q.-L.; Zhang, S.-S.; Gao, J.; Li, W.-h.; Xu, L.-Z.; Yu, Z.-G. Bioorg. Med. Chem. 2006, 14, 7146.
(h) Gerby, B.; Boumendjel, A.; Blanc, M.; Bringuier, P. P.; Champelovier, P.; Fortuné, A.; Ronot, X.; Boutonnat, J. Bioorg. Med. Chem. Lett. 2007, 17, 208.
(i) Yu, L.-T.; Ho, M.-T.; Chang, C.-Y.; Yang, T.-K. Tetrahedron: Asymmetry 2007, 18, 949.
(j) Malkov, A. V.; Ston?ius, S.; Ko?ovský, P. Angew. Chem., Int. Ed. 2007, 46, 3722.
(k) Fan, X.; Song, Y.-L.; Long, Y.-Q. Org. Process Res. Dev. 2008, 12, 69.
(l) Britton, R.; Kang, B. Nat. Prod. Rep. 2013, 30, 227.
[2] (a) Pearson, D. E.; Pope, H. W.; Hargrove, W. W. Org. Synth. 1973, V, 117.
(b) Diwu, Z.; Beachdel, C.; Klaubert, D. H. Tetrahedron Lett. 1998, 39, 4987.
[3] (a) Kosower, E. M.; Cole, W. J.; Wu, G. S.; Cardy, D. E.; Meisters, G. J. Org. Chem. 1963, 28, 630.
(b) King, L. C.; Ostrum, G. K. J. Org. Chem. 1964, 29, 3459.
[4] (a) Adhikari, M. V.; Samant, S. D. Ultrason. Sonochem. 2002, 9, 107.
(b) Lee, J. C.; Bae, Y. H.; Chang, S.-K. Bull. Korean Chem. Soc. 2003, 24, 407.
(c) Meshram, H. M.; Reddy, P. N.; Sadashiv, K.; Yadav, J. S. Tetrahedron Lett. 2005, 46, 623.
(d) Chan Lee, J.; Jung Park, H. Synth. Commun. 2007, 37, 87.
[5] (a) Reuss, R. H.; Hassner, A. J. Org. Chem. 1974, 39, 1785.
(b) Blanco, L.; Amice, P.; Conia, J. M. Synthesis 1976, 194.
(c) Olah, G. A.; Ohannesian, L.; Arvanaghi, M.; Prakash, G. K. S. J. Org. Chem. 1984, 49, 2032.
(d) Ram, R. N.; Manoj, T. P. J. Org. Chem. 2008, 73, 5633.
(e) Jing, Y.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 4932.
[6] Mizar, P.; Wirth, T. Angew. Chem., Int. Ed. 2014, 53, 5993.
[7] (a) Wirth, T. Topics in Current Chemistry 2003, 224, 1~248.
(b) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, Chichester, 2013.
(c) Chen, J.; Qu, H. M.; Peng, J.; Chen, C. Chin. J. Org. Chem. 2015, 35, 937 (in Chinese).
(陈静, 曲红梅, 彭静, 陈超, 有机化学, 2015, 35, 937.)
[8] (a) Moriarty, R. M.; Hu, H.; Gupta, S. C. Tetrahedron Lett. 1981, 22, 1283.
(b) Koser, G. F.; Relenyi, A. G.; Kalos, A. N.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1982, 47, 2487.
(c) Merritt, E. A.; Olofsson, B. Synthesis 2011, 517.
(d) Song, A. R.; Zhang, C. Acta Chim. Sinica 2015, 73, 1002 (in Chinese).
(宋爱茹, 张弛, 化学学报, 2015, 73, 1002.)
[9] (a) Akula, R.; Galligan, M.; Ibrahim, H. Chem. Commun. 2009, 6991.
(b) Ibrahim, H.; Akula, R.; Galligan, M. Synthesis 2011, 347.
(c) Galligan, M. J.; Akula, R.; Ibrahim, H. Org. Lett. 2014, 16, 600.
[10] (a) Hara, S.; Sekiguchi, M.; Ohmori, A.; Fukuhara, T.; Yoneda, N. Chem. Commun. 1996, 1899.
(b) Jia, Z.; Galvez, E.; Sebastian, R. M.; Pleixats, R.; Alvarez-Larena, A.; Martin, E.; Vallribera, A.; Shafir, A. Angew. Chem., Int. Ed. 2014, 53, 11298.
(c) Narayan, R.; Manna, S.; Antonchick, A. P. Synlett 2015, 1785.
[11] Xu, Z.; Zhang, D.; Zou, X. Synth. Commun. 2006, 36, 255.
[12] Paul, S.; Gupta, V.; Gupta, R.; Loupy, A. Tetrahedron Lett. 2003, 44, 439.

文章导航

/