综述与进展

氧气存在下自由基对不饱和键的双官能化反应

  • 许健 ,
  • 宋秋玲
展开
  • a 华侨大学化工学院新一代物质转化研究所厦门 361021;
    b 中国科学院化学研究所分子科学国家重点实验室北京 100190

收稿日期: 2016-01-02

  修回日期: 2016-01-20

  网络出版日期: 2016-04-29

基金资助

国家自然科学基金(No.21202049)、国家青年千人计划、福建省百人计划、华侨大学科技创新及领军人才计划(No.Z14X0047)资助项目.

Radical Promoted Difunctionalization of Unsaturated Carbon-Carbon Bonds in the Presence of Dioxygen

  • Xu Jian ,
  • Song Qiuling
Expand
  • aInstitute of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University, Xiamen 361021;
    b National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Siences, Beijing 100190

Received date: 2016-01-02

  Revised date: 2016-01-20

  Online published: 2016-04-29

Supported by

Project supported by the National Natural Science Foundation of China (No. 21202049), the Recruitment Program of Global Experts (1000 Talents Plan), the Fujian Hundred Talents Plan and the Program of Innovative Research Team of Huaqiao University (No. Z14X0047).

摘要

碳碳不饱和键的双官能团化反应是有机合成的一种重要策略. 近年来, 利用自由基与氧气对不饱和键的双官能团化反应引起化学家们的广泛关注, 并取得了诸多的研究进展. 该类反应以氧气为反应试剂, 提供了一种绿色、高原子经济性的合成醇或者酮的方法. 按自由基类型不同, 对近年来在氧气参与下不饱和键的双官能团化反应的研究进展进行综述.

本文引用格式

许健 , 宋秋玲 . 氧气存在下自由基对不饱和键的双官能化反应[J]. 有机化学, 2016 , 36(6) : 1151 -1162 . DOI: 10.6023/cjoc201603042

Abstract

The difunctionalization of unsaturated carbon-carbon bonds is a powerful strategy for the synthesis of various organic compounds. Recently, the remarkable progress has been made in difunctionalization of unsaturated carbon-carbon bonds with dioxygen and radicals. The present protocol, which utilizes dioxygen as oxygen source, provides a green and atom economy approach to alcohols or ketones. This review will summarize the recent development in this area on the basis of different types of radicals.

参考文献

[1] Kolb, H.-C.; VanNieuwenhze, M.-S.; Sharpless, K.-B. Chem. Rev. 1994, 94, 2483.
[2] Mai, W.-P.; Wang, J.-T.; Yang, L.-R.; Yuan, J.-W.; Mao, P.; Xiao, Y.-M.; Qu, L.-B. Chin. J. Org. Chem. 2014, 34, 1958 (in Chinese). (买文鹏, 王继涛, 杨亮茹, 袁金伟, 毛璞, 肖咏梅, 屈凌波, 有机化学, 2014, 349, 185.)
[3] (a) Nguyen, L.-M.; Diep, V.-V.; Phan, H.-T.; Niesor, E.-J.; Masson, D.; Guyon-Gellin, Y.; Buattini, E.; Severi, C.; Azoulay, R.; Bentzen, C.-L. WO 2004026245, 2004 [Chem. Abstr. 2004, 140, 287532].
(b) Erion, M.-D.; Jiang,-H.; Boyer, S.-H. US 20060046980, 2006 [Chem. Abstr. 2006, 144, 254238].
(c) Perumal, S.-K.; Adediran, S.-A.; Pratt, R.-F. Bioorg. Med. Chem. 2008, 16, 6987.
[4] (a) Ryglowski, A.; Kafarski, P. Tetrahedron 1996, 52, 10685.
(b) Kitamura, M.; Tokunaga, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2931.
[5] Maryanoff, B.-E.; Reitz, A.-B. Chem. Rev. 1989, 89, 863.
[6] Wei, W.; Ji, J.-X. Angew. Chem., Int. Ed. 2011, 50, 9097.
[7] Zhou, M.-X.; Zhou, Y.; Song, Q. Chem. Eur. J. 2015, 21, 10654.
[8] Chen, X.; Li, X.; Chen, X.; Qu, L.; Chen, J.; Sun, K.; Liu, Z.-D.; Bi, W.; Xia, Y.; Wu, H.; Zhao, Y.-F. Chem. Commun. 2015, 51, 3846.
[9] Zhang, P.-B.; Zhang, L.-L.; Gao, Y.-Z.; Xu, J.; Fang, H.; Tang, G.; Zhao, Y.-F. Chem. Commun. 2015, 51, 7839.
[10] Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. Org. Lett. 2015, 17, 1786.
[11] Yi, N.-N.; Wang, R.-J.; Zou, Hua.-X.; He, W.-B.; He, W. J. Org. Chem. 2015, 80, 5023.
[12] Zeng, Y.-F.; Tan, D.-H.; Lv, W.-X.; Li, Q.; Wang, H. Eur. J. Org. Chem. 2015, 4335.
[13] (a) Zhou, Y.; Rao, C.; Mai, S.; Song, Q. J. Org. Chem. 2016, 81, 2027.
(b) Zhou, Y.; Zhou, M.; Chen, M.; Su, J.; Du, J.; Song, Q. RSC Adv. 2015, 5, 103977.
[14] Taniguchi, T.; Idota, A.; Yokoyama, S.; Ishibashi, H. Tetrahedron Lett. 2011, 52, 4768.
[15] Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.
[16] Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
[17] Singh, A.-K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 2845.
[18] Wei, W.; Liu, C.-L.; Yang, D.-S.; Wen, J.-W.; You, J.-M.; Suo, Y.-R.; Wang, H.; Chem. Commun. 2013, 49, 10239.
[19] Wei, W.; Wen, J.-W.; Yang, D.-S.; Wu, M; You, J.-M.; Wang, H. Org. Biomol. Chem. 2014, 12, 7678.
[20] Liu, C.-R.; Ding, L.-H.; Guo, G.; Liu, W.-W. Eur. J. Org. Chem. 2016, 910.
[21] Singh, A.-K.; Chawla, R.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 4742.
[22] Chawla, R.; Singh, A.-K.; Yadav, L. D. S. Eur. J. Org. Chem. 2014, 2032.
[23] Singh, A.-K.; Chawla, R.; Keshari, T.; Yadav, V.-K.; Yadav, L. D. S. Org. Biomol. Chem. 2014, 12, 8550.
[24] Keshari, T.; Yadav, V.-K.; Srivastava, V.-P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986.
[25] Zhou, S.-F.; Pan, X.-Q.; Zhou, Z.-H.; Shoberu, A.; Zhang, P.-Z.; Zou, J.-P. J. Org. Chem. 2015, 80, 5348.
[26] Shi, X.-K.; Ren, X.-Y.; Ren, Z.-Y.; Li, J.; Wang, Y.-L.; Yang, S.-Z.; Gu, J.-X.; Gao, Q.; Huang, G.-S. Eur. J. Org. Chem. 2014, 5083.
[27] Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 7156.
[28] Taniguchi. T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151.
[29] Taniguchi, N. J. Org. Chem. 2015, 80, 7797.
[30] Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2014, 4, 13191.
[31] Zhou, S.-F.; Pan, X.-Q.; Zhou, Z.-H.; Shoberu, A.; Zou, J.-P. J. Org. Chem. 2015, 80, 3682.
[32] Wang, H.-M.; Lu, Q.-Q.; Qian, C.-H.; Liu, C.; Liu, K.; Chen, K.; Lei, A. Angew. Chem., Int. Ed. 2016, 55, 1094.
[33] Liu, K.; Li, D.-P.; Zhou, S.-F.; Pan, X.-Q.; Shoberu, A.; Zou, J.-P. Tetrahedron 2015, 71, 4031.
[34] Wang, G.-Z.; He, X.-P.; Dai, J.-J.; Xu, H.-J. Chin. J. Org. Chem. 2014, 34, 837 (in Chinese). (王光祖, 赫侠平, 戴建军, 许华建, 有机化学, 2014, 34, 837.)
[35] Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632.
[36] Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Agew. Chem., Int. Ed. 2013, 52, 9747.
[37] Maji, A.; Hazra, A.; Maiti, D. Org. Lett. 2014, 16, 4524.
[38] Lu, Q.; Liu, C.; Huang, Z.; Ma, Y.; Zhang, J.; Lei, A. Chem. Comun. 2014, 50, 14101.
[39] Yang, Y.; Liu, Y.-L.; Jiang, Y.; Zhang, Y.; Vicic, D.-A. J. Org. Chem. 2015, 80, 6639.
[40] Luo, H.-Q.; Zhang, Z.-P.; Dong, W.; Luo, X.-Z. Synlett 2014, 1307
[41] Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692.
[42] Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059.
[43] (a) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 13320.
(b) Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2012, 3, 1672.
[44] Bag, R.; Sar, D.; Punniyamurthy, T. Org. Lett. 2015, 17, 2010.
[45] Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H.; Li, W.; Liu, X.; Liang, Y.-M. J. Org. Chem. 2015, 80, 5572.
[46] Lu, Q.; Liu, Z.; Luo, Y.; Zhang, G.; Huang, Z.; Wang, H.; Liu, C.; Miller, J.-T.; Lei, A. Org. Lett. 2015, 17, 3402.
[47] Dickschat, A.; Studer, A. Org. Lett. 2010, 12, 3972.
[48] Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew. Chem., Int. Ed. 2010, 49, 10154.
[49] Taniguchi, T.; Zaimoku, H.; Ishibashi, H. Chem. Eur. J. 2011, 17, 4307.
[50] Kindt, S.; Jasch, H.; Heinrich, M.-R. Chem. Eur. J. 2014, 20, 6251.
[51] Su, Y.; Sun, X.; Wu, G.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 9808.

文章导航

/