研究论文

α-糜蛋白酶催化合成喹啉衍生物

  • 梁萌 ,
  • 谢宗波 ,
  • 艾锋 ,
  • 乐长高
展开
  • a 东华理工大学 江西省质谱科学与仪器2011协同创新中心 南昌 330013;
    b 东华理工大学应用化学系 南昌 330013

收稿日期: 2016-04-24

  修回日期: 2016-06-02

  网络出版日期: 2016-07-07

基金资助

国家自然科学基金(Nos.21262002,21462001,21465002)、长江学者和创新团队发展计划(No.IRT13054)、江西省自然科学基金(No.20142BAB203008)资助项目.

Synthesis of Quinoline Derivatives Catalyzed by α-Chymotrypsin

  • Liang Meng ,
  • Xie Zongbo ,
  • Ai Feng ,
  • Le Zhanggao
Expand
  • a Jiangxi 2011 Joint Center for the Innovative Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013;
    b Department of Applied Chemistry, East China University of Technology, Nanchang 330013

Received date: 2016-04-24

  Revised date: 2016-06-02

  Online published: 2016-07-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos.21262002,21462001,21465002),the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT13054),the Natural Science Foundation of Jiangxi Province (No.20142BAB203008).

摘要

首次以α-糜蛋白酶为生物催化剂,通过2-氨基芳基酮和α-亚甲基酮之间的Friedländer缩合反应,合成了11种喹啉衍生物,取得了中等至优异的产率.该方法操作简便,条件温和,不仅拓展了蛋白酶非专一性及生物催化的应用范围,对推动绿色化学的发展也具有积极意义.

本文引用格式

梁萌 , 谢宗波 , 艾锋 , 乐长高 . α-糜蛋白酶催化合成喹啉衍生物[J]. 有机化学, 2016 , 36(11) : 2704 -2708 . DOI: 10.6023/cjoc201604051

Abstract

The α-chymotrypsin-catalyzed Friedländer condensation reaction between 2-aminoaryl ketone and α-methylene ketone was firstly reported, and a series of quinoline derivatives were obtained in moderate to excellent yields. This method is easy to operate and the reaction condition is mild, which not only expands the application of the promiscuity of protease, but also has positive significance for promoting the development of the green chemistry.

参考文献

[1] Lam, K.-H.; Lee, K. K.-H.; Gambari, R.; Kok, S. H.-L.; Kok, T.-W.; Chan, A. S.-C.; Bian, Z.-X.; Wong, W.-Y.; Wong, R. S.-M.; Lau, F.-Y. Phytomedicine 2014, 21, 877.
[2] Talamas, F. X.; Abbot, S. C.; Anand, S.; Brameld, K. A.; Carter, D. S.; Chen, J.; Davis, D.; de Vicente, J.; Fung, A. D.; Gong, L. J. Med. Chem. 2013, 57, 1914.
[3] Lam, K.-H.; Gambari, R.; Lee, K. K.-H.; Chen, Y.-X.; Kok, S. H.-L.; Wong, R. S.-M.; Lau, F.-Y.; Cheng, C.-H.; Wong, W.-Y.; Bian, Z.-X. Bioorg. Med. Chem. Lett. 2014, 24, 367.
[4] Vandekerckhove, S.; Tran, H. G.; Desmet, T.; D'hooghe, M. Bioorg. Med. Chem. Lett. 2013, 23, 4641.
[5] Ratheesh, M.; Sindhu, G.; Helen, A. Inflammation Res. 2013, 62, 367.
[6] Chen, J.-J.; Chang, Y.-L.; Teng, C.-M.; Su, C.-C.; Chen, I.-S. Planta Med. 2002, 68, 790.
[7] L, C. Sichuan Chem. Ind. 2004, (7), 28 (in Chinese). (梁诚, 四川化工, 2004, (7), 28.)
[8] Zhang, X.; Campo, M. A.; Yao, T.; Larock, R. C. Org. Lett. 2005, 7, 763.
[9] Kouznetsov, V. V.; Méndez, L. Y. V.; Gómez, C. M. M. Curr. Org. Chem. 2005, 9, 141.
[10] Yadav, J.; Rao, P. P.; Sreenu, D.; Rao, R. S.; Kumar, V. N.; Nagaiah, K.; Prasad, A. Tetrahedron Lett. 2005, 46, 7249.
[11] Sloop, J. C. J. Phys. Org. Chem. 2009, 22, 110.
[12] Yang, D.-Q.; Lü, F.; Guo, W. Chin. J. Org. Chem. 2004, 24, 366 (in Chinese). (杨定乔, 吕芬, 郭维, 有机化学, 2004, 24, 366.)
[13] (a) Fehnel, E. A. J. Org. Chem. 1966, 31, 2899.
(b) Gladiali, S.; Chelucci, G.; Mudadu, M. S.; Gastaut, M.-A.; Thummel, R. P. J. Org. Chem. 2001, 66, 400.
(c) Dormer, P. G.; Eng, K. K.; Farr, R. N.; Humphrey, G. R.; McWilliams, J. C.; Reider, P.; Sager, J. W.; Volante, R. J. Org. Chem. 2003, 68, 467.
[14] (a) Sliskovic, D.; Picard, J.; Roark, W.; Roth, B.; Ferguson, E.; Krause, B.; Newton, R.; Sekerke, C.; Shaw, M. J. Med. Chem. 1991, 34, 367.
(b) Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Kitahara, M.; Sakashita, M.; Sakoda, R. Bioorg. Med. Chem. 2001, 9, 2727.
[15] (a) McNaughton, B. R.; Miller, B. L. Org. Lett. 2003, 5, 4257.
(b) Arumugam, P.; Karthikeyan, G.; Atchudan, R.; Muralidharan, D.; Perumal, P. T. Chem. Lett. 2005, 34, 314.
[16] Mogilaiah, K.; Reddy, C. S. Synth. Commun. 2003, 33, 3131.
[17] Long, Y.-H.; Liang, L.-H.; Yang, D.-Q. Chin. J. Org. Chem. 2009, 29, 1 (in Chinese). (龙玉华, 梁丽华, 杨定乔, 有机化学, 2009, 29, 1.)
[18] (a) Secundo, F.; Carrea, G. Chem.-Eur. J. 2003, 9, 3194.
(b) Drauz, K. Enzyme Catalysis in Organic Synthesis:A Comprehensive Handbook, John Wiley & Sons, 2012, p. 67.
(c) Reetz, M. T. Curr. Opin. Chem. Biol. 2002, 6, 145.
[19] Monsan, P.; Paul, F. FEMS Microbiol. Rev. 1995, 16, 187.
[20] (a) Du, L.-L.; Wu, Q.; Chen, C.-X.; Liu, B.-K.; Lin, X.-F. J. Mol. Catal. B:Enzym. 2009, 58, 208.
(b) Iwai, N.; Kitahara, Y.; Kitazume, T. J. Mol. Catal. B:Enzym. 2011, 73, 1.
[21] Busto, E.; Gotor-Fernández, V.; Gotor, V. Chem. Soc. Rev. 2010, 39, 4504.
[22] Ge, X.; Lai, Y.-F.; Chen, X.-Z. Chin. J. Org. Chem. 2013, 33, 1686 (in Chinese). (葛新, 赖依峰, 陈新志, 有机化学, 2013, 33, 1686.)
[23] Xie, B.-H.; Guan, Z.; He, Y.-H. Biocatal. Biotransform. 2012, 30, 238.
[24] Wang, J.-L.; Li, X.; Xie, H.-Y.; Liu, B.-K.; Lin, X.-F. J. Bio-technol. 2010, 145, 240.
[25] Kise, H.; Hayakawa, A.; Noritomi, H. J. Biotechnol. 1990, 14, 239.
[26] Enugala, R.; Nuvvula, S.; Kotra, V.; Varala, R.; Adapa, S. R. Heterocycles 2008, 75, 2523.
[27] Wang, H.-S.; Zeng, J.-E. Chin. J. Org. Chem. 2010, 30, 1072 (in Chinese). (王宏社, 曾君娥, 有机化学, 2010, 30, 1072.)

文章导航

/