研究简报

多肽酰肼法合成翻译后修饰物蛋白NEDD8

  • 管超建 ,
  • 王涛 ,
  • 王君 ,
  • 李宜明
展开
  • 合肥工业大学生物与医学工程学院 合肥 230009

收稿日期: 2016-05-10

  修回日期: 2016-06-08

  网络出版日期: 2016-07-07

基金资助

国家自然科学基金(Nos.21372058,21572043)资助项目.

Synthesis of Post-translational Modifier Protein NEDD8 via Ligation of Peptide Hydrazides

  • Guan Chaojian ,
  • Wang Tao ,
  • Wang Jun ,
  • Li Yiming
Expand
  • Department of Pharmacy, School of Biological and Medical Engineering, Hefei University of Technology, Hefei 230009

Received date: 2016-05-10

  Revised date: 2016-06-08

  Online published: 2016-07-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos.21372058,21572043).

摘要

NEDD8(神经前体细胞表达发育下调蛋白8)是真核生物体内一种重要的类泛素化蛋白,参与调控细胞内一系列重要的生命过程.目前获得NEDD8的主要方法是生物重组表达,该策略的缺点在于表达量不高且需要除去外加纯化标签的步骤.本研究结合高温辅助固相合成技术与基于多肽酰肼连接的一锅连接-脱硫策略,较为高效地获得了均一性的NEDD8蛋白,为进一步研究NEDD8修饰蛋白的结构与功能提供了基础.

本文引用格式

管超建 , 王涛 , 王君 , 李宜明 . 多肽酰肼法合成翻译后修饰物蛋白NEDD8[J]. 有机化学, 2016 , 36(11) : 2763 -2768 . DOI: 10.6023/cjoc201605013

Abstract

As an important ubiquitin-like modifier protein in eukaryotic organisms, NEDD8 (neural precursor cell expressed developmentally down-regulated 8) is involved in regulating a series of important life processes in cells. Nowadays, the major method for obtaining NEDD8 is recombinant protein expression. However, the yield is relatively low and the recombined tag for purification needs to be removed in an extra step. In present work, NEDD8 protein was first synthesized in homogeneity by using high temperature assisted solid-phase peptide synthesis (SPPS) combining with the one-pot ligation-desulfurization strategy. This method lays the foundation for the study of NEDD8 modified proteins in future.

参考文献

[1] (a) Pickart, C. M.; Eddins, M. J. Biochim. Biophys. Acta 2004, 1695, 55.
(b) Pickart, C. M.; Fushman, D. Curr. Opin. Chem. Biol. 2004, 8, 610.
[2] (a) Matunis, M. J.; Coutavas, E.; Blobel, G. J. Cell Biol. 1997, 135, 1457.
(b) Kumar, S.; Yoshida, Y.; Noda, M. Biochem. Biophys. Res. Commun. 1993, 195, 393.
[3] (a) Hochstrasser, M. Cell 2006, 124, 27.
(b) Pickart, C. M. Cell 2004, 116, 181.
[4] Pan, Z. Q.; Kentsis, A.; Dias, D. C.; Yamoah, K.; Wu, K. Oncogene 2004, 23, 1985.
[5] (a) Duda, D. M.; Borg, L. A.; Scott, D. C.; Hunt, H. W.; Hammel, M.; Schulman, B. A. Cell 2008, 134, 995.
(b) Scott, D. C.; Sviderskiy, V. O.; Monda, J. K.; Lydeard, J. R.; Cho, S. E.; Harper, J. W.; Schulman, B. A. Cell 2014, 157, 1671.
(c) Cavadini, S.; Fischer, E. S.; Bunke, R. D.; Potenza, A.; Lingaraju, G. M.; Goldie, K. N.; Mohamed, W. I.; Faty, M.; Petzold, G.; Beckwith, R. E. J.; Tichkule, R. B.; Hassiepen, U.; Abdulrahman, W.; Pantelic, R. S.; Matsumoto, S.; Sugasawa, K.; Stahlberg, H.; Thomä, N. H. Nature 2016, 531, 598.
[6] Singh, R. K.; Zerath, S.; Kleifeld, O.; Scheffner, M.; Glickman, M. H.; Fushman, D. Mol. Cell. Proteomics 2012, 11, 1595.
[7] (a) Stickle, N. H.; Chung, J.; Klco, J. M.; Hill, R. P.; Kaelin, W. G. Jr.; Ohh, M. Mol. Cell. Biol. 2004, 24, 3251.
(b) Harper, J. Cell 2004, 118, 2.
(c) Xirodimas, D. P.; Saville, M. K.; Bourdon, J. C.; Hay, R. T.; Lane, D. P. Cell 2004, 118, 83.
(d) Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
(e) Broemer, M.; Tenev, T.; Rigbolt, K. T. G.; Hempel, S.; Blagoev, B.; Silke, J.; Ditzel, M.; Meier, P. Mol. Cell 2010, 40, 810.
(f) Benjamin, S.; Steller, H. Dev. Cell 2010, 19, 791.
[8] (a) Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
(b) Jones, J.; Wu, K.; Yang, Y. Y.; Guerrero, C.; Nillegoda, N.; Pan, Z. Q.; Lan, H. J. Proteome Res. 2008, 7, 1274.
[9] Jbara, M.; Maity, S. K.; Seenaiah, M.; Brik, A. J. Am. Chem. Soc. 2016, 138, 5069.
[10] (a) Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.
(b) Raibaut, L.; Ollivier, N.; Melnyk, O. Chem. Soc. Rev. 2012, 41, 7001.
(c) Huang, Y. C.; Liu, L. Sci. China Chem. 2015, 58, 1779.
(d) Huang, Y. C.; Fang, G. M.; Liu, L. Natl. Sci. Rev. 2016, 3, 107.
(e) Liu, H.; Li, X. C. Org. Biomol. Chem. 2014, 12, 3768.
[11] (a) Fang, G. M.; Li, Y. M.; Huang, Y. C.; Li, J. B.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.
(b) Fang, G.-M.; Wang, J.-X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.
(c) Tang, S.; Si, Y. Y.; Wang, Z. P.; Mei, K. R.; Chen, X.; Cheng, J. Y.; Zheng, J.-S.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 5713.
(d) Wang, J. X.; Fang, G. M.; He, Y.; Qu, D. L.; Yu, M.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 2194.
(e) Zheng, J. S.; Yu, M.; Qi, Y. K.; Tang, S.; Shen, F.; Wang, Z. P.; Xiao, L.; Zhang, L.; Tian, C. L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.
(f) Zheng, J.-S.; He, Y.; Zuo, C.; Cai, X.-Y.; Tang, S.; Wang, Z. A.; Zhang, L.-H.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2016, 138, 3553.
[12] Huang, Y. C.; Guan, C. J.; Tan, X. L.; Chen, C. C.; Guo, Q. X.; Li, Y. M. Org. Biomol. Chem. 2015, 13, 1500.
[13] Huang, Y. C.; Chen, C. C.; Gao, S.; Wang, Y. H.; Xiao, H.; Wang, F.; Tian, C. L.; Li, Y. M. Chem. Eur. J. 2016, 22, 7623.
[14] Kochendoerfer, G. G.; Kent, S. B. H. Curr. Opin. Chem. Biol. 1999, 3, 665.
[15] (a) Miller, M.; Schneider, J.; Sathyanarayana, B. K.; Toth, M. V.; Marshall, G. R.; Clawson, L.; Selk, L.; Kent, S. B. H.; Wlodawer, A. Science 1989, 246, 1149.
(b) Deng, F. K.; Zhang, L.; Wang, Y. T.; Schneewind, O.; Kent, S. B. H. Angew. Chem., Int. Ed. 2014, 53, 4662.
[16] (a) Zheng, J. S.; Tang, S.; Huang, Y. C.; Liu, L. Acc. Chem. Res. 2013, 46, 2475.
(b) Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L. Nat. Protoc. 2013, 8, 2483.
(c) Li, J. B.; Li, Y. Y.; He, Q. Q.; Li, Y. M.; Li, H. T.; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.
(d) Chen, C. C.; Li, S. J.; Chen, Y. Q.; Xu, H. J.; Li, Y. M. Chin. J. Org. Chem. 2014, 34, 1452.
(e) Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.

文章导航

/