多肽酰肼法合成翻译后修饰物蛋白NEDD8
收稿日期: 2016-05-10
修回日期: 2016-06-08
网络出版日期: 2016-07-07
基金资助
国家自然科学基金(Nos.21372058,21572043)资助项目.
Synthesis of Post-translational Modifier Protein NEDD8 via Ligation of Peptide Hydrazides
Received date: 2016-05-10
Revised date: 2016-06-08
Online published: 2016-07-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos.21372058,21572043).
管超建 , 王涛 , 王君 , 李宜明 . 多肽酰肼法合成翻译后修饰物蛋白NEDD8[J]. 有机化学, 2016 , 36(11) : 2763 -2768 . DOI: 10.6023/cjoc201605013
As an important ubiquitin-like modifier protein in eukaryotic organisms, NEDD8 (neural precursor cell expressed developmentally down-regulated 8) is involved in regulating a series of important life processes in cells. Nowadays, the major method for obtaining NEDD8 is recombinant protein expression. However, the yield is relatively low and the recombined tag for purification needs to be removed in an extra step. In present work, NEDD8 protein was first synthesized in homogeneity by using high temperature assisted solid-phase peptide synthesis (SPPS) combining with the one-pot ligation-desulfurization strategy. This method lays the foundation for the study of NEDD8 modified proteins in future.
[1] (a) Pickart, C. M.; Eddins, M. J. Biochim. Biophys. Acta 2004, 1695, 55.
(b) Pickart, C. M.; Fushman, D. Curr. Opin. Chem. Biol. 2004, 8, 610.
[2] (a) Matunis, M. J.; Coutavas, E.; Blobel, G. J. Cell Biol. 1997, 135, 1457.
(b) Kumar, S.; Yoshida, Y.; Noda, M. Biochem. Biophys. Res. Commun. 1993, 195, 393.
[3] (a) Hochstrasser, M. Cell 2006, 124, 27.
(b) Pickart, C. M. Cell 2004, 116, 181.
[4] Pan, Z. Q.; Kentsis, A.; Dias, D. C.; Yamoah, K.; Wu, K. Oncogene 2004, 23, 1985.
[5] (a) Duda, D. M.; Borg, L. A.; Scott, D. C.; Hunt, H. W.; Hammel, M.; Schulman, B. A. Cell 2008, 134, 995.
(b) Scott, D. C.; Sviderskiy, V. O.; Monda, J. K.; Lydeard, J. R.; Cho, S. E.; Harper, J. W.; Schulman, B. A. Cell 2014, 157, 1671.
(c) Cavadini, S.; Fischer, E. S.; Bunke, R. D.; Potenza, A.; Lingaraju, G. M.; Goldie, K. N.; Mohamed, W. I.; Faty, M.; Petzold, G.; Beckwith, R. E. J.; Tichkule, R. B.; Hassiepen, U.; Abdulrahman, W.; Pantelic, R. S.; Matsumoto, S.; Sugasawa, K.; Stahlberg, H.; Thomä, N. H. Nature 2016, 531, 598.
[6] Singh, R. K.; Zerath, S.; Kleifeld, O.; Scheffner, M.; Glickman, M. H.; Fushman, D. Mol. Cell. Proteomics 2012, 11, 1595.
[7] (a) Stickle, N. H.; Chung, J.; Klco, J. M.; Hill, R. P.; Kaelin, W. G. Jr.; Ohh, M. Mol. Cell. Biol. 2004, 24, 3251.
(b) Harper, J. Cell 2004, 118, 2.
(c) Xirodimas, D. P.; Saville, M. K.; Bourdon, J. C.; Hay, R. T.; Lane, D. P. Cell 2004, 118, 83.
(d) Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
(e) Broemer, M.; Tenev, T.; Rigbolt, K. T. G.; Hempel, S.; Blagoev, B.; Silke, J.; Ditzel, M.; Meier, P. Mol. Cell 2010, 40, 810.
(f) Benjamin, S.; Steller, H. Dev. Cell 2010, 19, 791.
[8] (a) Xirodimas, D. P.; Sundqvist, A.; Nakamura, A.; Shen, L.; Botting, C.; Hay, R. T. EMBO Rep. 2008, 9, 280.
(b) Jones, J.; Wu, K.; Yang, Y. Y.; Guerrero, C.; Nillegoda, N.; Pan, Z. Q.; Lan, H. J. Proteome Res. 2008, 7, 1274.
[9] Jbara, M.; Maity, S. K.; Seenaiah, M.; Brik, A. J. Am. Chem. Soc. 2016, 138, 5069.
[10] (a) Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.
(b) Raibaut, L.; Ollivier, N.; Melnyk, O. Chem. Soc. Rev. 2012, 41, 7001.
(c) Huang, Y. C.; Liu, L. Sci. China Chem. 2015, 58, 1779.
(d) Huang, Y. C.; Fang, G. M.; Liu, L. Natl. Sci. Rev. 2016, 3, 107.
(e) Liu, H.; Li, X. C. Org. Biomol. Chem. 2014, 12, 3768.
[11] (a) Fang, G. M.; Li, Y. M.; Huang, Y. C.; Li, J. B.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.
(b) Fang, G.-M.; Wang, J.-X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.
(c) Tang, S.; Si, Y. Y.; Wang, Z. P.; Mei, K. R.; Chen, X.; Cheng, J. Y.; Zheng, J.-S.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 5713.
(d) Wang, J. X.; Fang, G. M.; He, Y.; Qu, D. L.; Yu, M.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 2194.
(e) Zheng, J. S.; Yu, M.; Qi, Y. K.; Tang, S.; Shen, F.; Wang, Z. P.; Xiao, L.; Zhang, L.; Tian, C. L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.
(f) Zheng, J.-S.; He, Y.; Zuo, C.; Cai, X.-Y.; Tang, S.; Wang, Z. A.; Zhang, L.-H.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2016, 138, 3553.
[12] Huang, Y. C.; Guan, C. J.; Tan, X. L.; Chen, C. C.; Guo, Q. X.; Li, Y. M. Org. Biomol. Chem. 2015, 13, 1500.
[13] Huang, Y. C.; Chen, C. C.; Gao, S.; Wang, Y. H.; Xiao, H.; Wang, F.; Tian, C. L.; Li, Y. M. Chem. Eur. J. 2016, 22, 7623.
[14] Kochendoerfer, G. G.; Kent, S. B. H. Curr. Opin. Chem. Biol. 1999, 3, 665.
[15] (a) Miller, M.; Schneider, J.; Sathyanarayana, B. K.; Toth, M. V.; Marshall, G. R.; Clawson, L.; Selk, L.; Kent, S. B. H.; Wlodawer, A. Science 1989, 246, 1149.
(b) Deng, F. K.; Zhang, L.; Wang, Y. T.; Schneewind, O.; Kent, S. B. H. Angew. Chem., Int. Ed. 2014, 53, 4662.
[16] (a) Zheng, J. S.; Tang, S.; Huang, Y. C.; Liu, L. Acc. Chem. Res. 2013, 46, 2475.
(b) Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L. Nat. Protoc. 2013, 8, 2483.
(c) Li, J. B.; Li, Y. Y.; He, Q. Q.; Li, Y. M.; Li, H. T.; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.
(d) Chen, C. C.; Li, S. J.; Chen, Y. Q.; Xu, H. J.; Li, Y. M. Chin. J. Org. Chem. 2014, 34, 1452.
(e) Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.
/
| 〈 |
|
〉 |