“受阻”路易斯酸碱对催化氢化反应的研究进展
收稿日期: 2016-07-30
修回日期: 2016-09-19
网络出版日期: 2016-11-03
基金资助
国家自然科学基金(Nos.21276238,21676253)资助项目.
Progress of Frustrated Lewis Pairs in Catalytic Hydrogenation
Received date: 2016-07-30
Revised date: 2016-09-19
Online published: 2016-11-03
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21276238, 21676253).
“受阻”路易斯酸碱对(FLPs)催化氢化反应是当前催化加氢领域的研究热点之一.该类反应具有环境友好、无重金属残留等特点,具有潜在的工业化应用前景.根据底物类别,对近几年”受阻”路易斯酸碱对在催化氢化领域的研究进展进行简要评述,并对FLPs不对称催化氢化进行简单介绍.
关键词: “受阻”路易斯酸碱对; 催化氢化; 不对称催化; 进展
王辉 , 郑亿 , 潘振涛 , 傅鸿樑 , 凌飞 , 钟为慧 . “受阻”路易斯酸碱对催化氢化反应的研究进展[J]. 有机化学, 2017 , 37(2) : 301 -313 . DOI: 10.6023/cjoc201607046
Frustrated Lewis pairs (FLPs) catalyzed hydrogenation reaction is one of the hotspots in the current hydrogenation field. This kind of reaction has the advantages of environment friendly, no metal residue, etc., and has a potential prospect for industrial application. According to the category of the substrate, a brief review of the recent progress in the field of the FLPs-catalyzed hydrogenation as well as the asymmetric hydrogenation is depicted.
[1] Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.
[2] Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D.W. Chem. Commun. 2007, 5072.
[3] Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. Angew. Chem. Int. Ed. 2008, 47, 6001.
[4] Holschumacher, D.; Bannenberg, T.; Hrib, C. G.; Jones, P. G.; Tamm, M. Angew. Chem. Int. Ed. 2008, 47, 7428.
[5] Lu, Z.-P.; Cheng, Z.-H.; Chen, Z.-X.; Weng, L.-H.; Li, Z.-H.; Wang, H.-D. Angew. Chem., Int. Ed. 2011, 50, 12227.
[6] Zaher, H.; Ashley, A. E.; Irwin, M.; Thompson, A. L.; Gutmann, M. J.; Krämer, T.; O'Hare, D. Chem. Commun., 2013, 49, 9755.
[7] Caputo, C. B.; Zhu, K.-L.; Vukotic, V. N.; Loeb, S. J.; Stephan, D. W. Angew. Chem. Int. Ed. 2013, 52, 960.
[8] Chernichenko, K.; Kótai, B.; Pápai, I.; Zhivonitko, V.; Nieger, M.; Leskelä, M.; Repo; T. Angew. Chem., Int. Ed. 2015, 54, 1749.
[9] Samigullin, K.; Georg, I.; Bolte, M.; Lerner, H. W.; Wagner, M. Chem. Eur. J. 2016, 22, 3478.
[10] Zheng, J.-H.; Lin, Y.-J.; Wang, H.-D. Dalton Trans. 2016, 45, 6088.
[11] Mo, Z.-B.; Rit, A.; Campos, J.; Kolychev, E. L.; Aldridge, S. J. Am. Chem. Soc. 2016, 138, 3306.
[12] Wang, P.-A.; Sun, X.-L.; Gao, P. Chin. J. Org. Chem. 2011, 31, 1369 (in Chinese).(王平安, 孙晓莉, 高鹏, 有机化学, 2011, 31, 1369.)
[13] Xu, Y.-Y.; Li, Z.; Maxim B.; Nie, W.-L. Prog. Chem. 2012, 24, 1526 (in Chinese).(徐莹莹, 李钊, Maxim B., 聂万丽, 化学进展, 2012, 24, 1526.)
[14] Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 8050.
[15] Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.
[16] Mohr, J.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 13278.
[17] Wei, S.-M.; Feng, X.-Q.; Du, H.-F. Org. Biomol. Chem. 2016, 14, 8026.
[18] Farrell, J. M.; Heiden, Z. M.; Stephan, D. W. Organometallics 2011, 30, 4497.
[19] Chatterjee, I.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 1965.
[20] Jiang, C.-F.; Blacque, O.; Berke, H. Chem. Commun. 2009, 5518.
[21] Scott, D. J.; Fuchter, M. J.; Ashley, A. E. Angew. Chem., Int. Ed. 2014, 53, 10218.
[22] Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. Angew. Chem., Int. Ed. 2008, 47, 7543.
[23] Wang, G.; Chen, C.; Du, T.-Y.; Zhong, W.-H. Adv. Synth. Catal. 2014, 356, 1747.
[24] (a) Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskelä, M.; Rieger, B.; Repo, T. Adv. Synth. Catal. 2011, 353, 2093.
(b) Chernichenko, K.; Nieger, M.; Leskelä, M.; Repo, T. Dalton Trans. 2012, 41, 9029.
(c) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskelä, M.; Repo, T.; Pyykkö, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117.
[25] Farrell, J. M.; Posaratnanathan, R. T.; Stephan, D. W. Chem. Sci. 2015, 6, 2010.
[26] Mummadi, S.; Unruh, D. K.; Zhao, J.-Y.; Li, S.-H.; Krempner, C. J. Am. Chem. Soc. 2016, 138, 3286.
[27] Schwendemann, S.; Frölich, R.; Kehr, G.; Erker, G. Chem. Sci. 2011, 2, 1842.
[28] (a) Parks, D. J.; Spence, R. E. v. H.; Piers, W. E. Angew. Chem., Int. Ed. Engl. 1995, 34, 809.
(b) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics 1998, 17, 5492.
[29] Wang, H.-D.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966.
[30] Greb, L.; Oña-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. Angew. Chem., Int. Ed. 2012, 51, 10164.
[31] Erõs, G.; Mehdi, H.; Pápai, I.; Rokob, T. A.; Király, P.; Tárkányi, G.; Soós, T. Angew. Chem., Int. Ed. 2010, 49, 6559.
[32] Inés, B.; Palomas, D.; Holle, S.; Steinberg, S.; Nicasio, J. A.; Alcarazo, M. Angew. Chem., Int. Ed. 2012, 51, 12367.
[33] (a) Greb, L.; Daniliuc, C. G.; Bergander, K.; Paradies, J. Angew. Chem., Int. Ed. 2013, 52, 5876.
(b) Paradies, J. Angew. Chem., Int. Ed. 2014, 53, 3552.
[34] Hounjet, L. J.; Bannwarth, C.; Garon, C. N.; Caputo, C. B.; Grimme, S.; Stephan, D. W. Angew. Chem., Int. Ed. 2013, 52, 7492.
[35] Wang, X.-W.; Kehr, G.; Daniliuc, C. G.; Erker, G. J. Am. Chem. Soc. 2014, 136, 3293.
[36] Chernichenko, K.; Madarász, Á.; Pápai, I.; Nieger, M.; Leskelä, M.; Repo, T. Nat. Chem. 2013, 5, 718.
[37] Szeto, K. C.; Sahyoun, W.; Merle, N.; Castelbou, J. L.; Popoff, N.; Lefebvre, F.; Raynaud, J.; Godard, C.; Claver, C.; Delevoye, L.; Gauvinc, R. M.; Taoufik, M. Catal. Sci. Technol. 2016, 6, 882.
[38] Reddy, J. S.; Xu, B.-H.; Mahdi, T.; Fröhlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Organometallics 2012, 31, 5638.
[39] Greb, L.; Oña-Burgos, P.; Kubas, A.; Falk, F. C.; Breher, F.; Finkc, K.; Paradies, J. Dalton Trans. 2012, 41, 9056.
[40] Longobardi, L. E.; Tang, C.; Stephan, D. W. Dalton Trans. 2014, 43, 15723.
[41] Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.
[42] Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136, 15813.
[43] Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2015, 54, 8511.
[44] Gyömöre, Á.; Bakos, M.; Földes, T.; Pápai, I.; Domján, A.; Soós, T. ACS Catal. 2015, 5, 5366.
[45] Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Commun. 2010, 46, 4884.
[46] Erös, G.; Nagy, K.; Mehdi, H.; Pápai, I.; Nagy, P.; Király, P.; Tárkányi, G.; Soós, T. Chem. Eur. J. 2012, 18, 574.
[47] Chen, B.-L.; Wang, B.; Lin, G.-Q. J. Org. Chem. 2010, 75, 941.
[48] Segawa, Y.; Stephan, D. W. Chem. Commun. 2012, 48, 11963.
[49] Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. J. Am. Chem. Soc. 2012, 134, 4088.
[50] Longobardi, L. E.; Mahdi, T.; Stephan, D. W. Dalton Trans. 2015, 44, 7114.
[51] Mahdi, T.; Castillo, J. N. D.; Stephan, D. W. Organometallics 2013, 32, 1971.
[52] Liu, Y.-B.; Du, H.-F. J. Am. Chem. Soc. 2013, 135, 12968.
[53] Liu Y. -B., Du H. -F. Acta Chim. Sinica 2014, 72, 771 (in Chinese).(刘勇兵, 杜海峰, 化学学报, 2014, 72, 771.)
[54] Chen, D.-J.; Klankermayer, J. Chem. Commun. 2008, 2130.
[55] Chen, D.-J.; Wang, Y.-T.; Klankermayer, J. Angew. Chem., Int. Ed. 2010, 49, 9475.
[56] Ghattas, G.; Chen, D.-J.; Pan, F.-F.; Klankermayer, J. Dalton Trans. 2012, 41, 9026.
[57] Chen, D.-J.; Leich, V.; Pan, F.-F.; Klankermayer, J. Chem. Eur. J. 2012, 18, 5184.
[58] Lindqvist, M.; Borre, K.; Axenov, K.; Kótai, B.; Nieger, M.; Leskelä, M.; Pápai, I.; Repo, T. J. Am. Chem. Soc. 2015, 137, 4038.
[59] (a) Mewald, M.; Oestreich, M. Chem. Eur. J. 2012, 18, 14079.
(b) Hermeke, J.; Mewald, M.; Oestreich, M. J. Am. Chem. Soc. 2013, 135, 17537.
[60] Süsse, L.; Hermeke, J.; Oestreich, M. J. Am. Chem. Soc. 2016, 138, 6940.
[61] Liu, Y.-B.; Du, H.-F. J. Am. Chem. Soc. 2013, 135, 6810.
[62] Wei, S.-M.; Du, H.-F. J. Am. Chem. Soc. 2014, 136, 12261.
[63] Ren, X.-Y.; Li, G.; Wei, S.-M.; Du, H.-F. Org. Lett. 2015, 17, 990.
[64] Ren, X.-Y.; Du, H.-F. J. Am. Chem. Soc. 2016, 138, 810.
[65] Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839.
[66] Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.; Stephan, D. W. Science 2013, 341, 1374.
[67] Hounjet, L. J.; Caputo, C. B.; Stephan, D. W. Dalton Trans. 2013, 42, 2629.
[68] Porwal, D.; Oestreich, M. Eur. J. Org. Chem. 2016, 3307.
/
〈 |
|
〉 |