氧气参与的无张力碳-碳单键断裂反应研究进展
Advances of Unstrained Carbon-Carbon Single Bond Cleavage with Oxygen
Received date: 2016-09-28
Revised date: 2016-10-28
Online published: 2016-11-17
吴空 , 宋婵 , 崔冬梅 . 氧气参与的无张力碳-碳单键断裂反应研究进展[J]. 有机化学, 2017 , 37(3) : 586 -602 . DOI: 10.6023/cjoc201609030
Unstrained carbon-carbon single bonds are ubiquitous in organic compounds, the cleavage of this bond is one of the most significant and challenging subject in organic chemistry. Oxidative cleavage of unstrained carbon-carbon single bond has become a great tendency, in particular, the transition metal-catalyzed oxidative cleavage reaction, which had made significant progress in recent years. Oxygen, as the most inexpensive and environmentally friendly oxidant, has been widely used in various organic reactions. This review is an overview of recent advances of unstrained carbon-carbon single bond cleavage with oxygen according to whether transition metal catalysis is needed.
Key words: oxygen; unstrained carbon-carbon single bond; cleavage
[1] (a) Padwa, A.; Zhang, H. J. Org. Chem. 2007, 72, 2570.
(b) Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 38, 504.
[2] (a) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
(b) Hu, S.; Shima, T.; Hou, Z. Nature 2014, 512, 413.
[3] Seo, J.-H.; Lee, S.-M.; Lee, J.; Park, J.-B. J. Biotechnol. 2015, 216, 158.
[4] (a) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(b) Ruhland, K. Eur. J. Org. Chem. 2012, 2012, 2683.
(c) Jun, C. H. Chem. Soc. Rev. 2004, 33, 610.
(d) Liu, H.; Feng, M.; Jiang, X. Chem.-Asian J. 2014, 9, 3360.
(e) Dermenci, A.; Coe, J. W.; Dong, G. Org. Chem. Front. 2014, 1, 567.
(f) Amadio, E.; Di Lorenzo, R.; Zonta, C.; Licini, G. Coord. Chem. Rev. 2015, 301-302, 147.
(g) Murakami, M.; Ito, Y. Top. Organomet. Chem. 1999, 3, 97.
[5] Miyaura, N.; Suzuki, A.; Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 19, 866.
[6] Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
[7] Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
[8] Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Sutton, A. D.; Thorn, D. L. J. Am. Chem. Soc. 2009, 131, 428.
[9] Kirihara, M.; Yoshida, K.; Noguchi, T.; Naito, S.; Matsumoto, N.; Ema, Y.; Torii, M.; Ishizuka, Y.; Souta, I. Tetrahedron Lett. 2010, 51, 3619.
[10] Rozhko, E.; Raabova, K.; Macchia, F.; Malmusi, A.; Righi, P.; Accorinti, P.; Alini, S.; Babini, P.; Cerrato, G.; Manzoli, M.; Cavani, F. ChemCatChem 2013, 5, 1998.
[11] Liu, Z.-Q.; Zhao, L.; Shang, X.; Cui, Z. Org. Lett. 2012, 14, 3218.
[12] Zhao, Y.; Cai, S.; Li, J.; Wang, D. Z. Tetrahedron 2013, 69, 8129.
[13] Tnay, Y. L.; Chiba, S. Chem.-Asian J. 2015, 10, 873.
[14] Cooke, H. A.; Peck, S. C.; Evans, B. S.; van der Donk, W. A. J. Am. Chem. Soc. 2012, 134, 15660.
[15] Chen, Y. C.; Zhu, M. K.; Loh, T. P. Org. Lett. 2015, 17, 2712.
[16] Zhang, L; Bi, X. H.; Guan, X. X.; Li, Q.; Barry, B. D.; Liao, P. Q. Angew. Chem., Int. Ed. 2013, 52, 11303.
[17] Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y.-F.; Jiao, N. Org. Lett. 2015, 17, 2542.
[18] Xing, Q.; Lv, H.; Xia, C.; Li, F. Chem. Commun. 2016, 52, 489.
[19] Wang, J.; Chen, W.; Zuo, S.; Liu, L.; Zhang, X.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 12334.
[20] Sun, H.; Yang, C.; Gao, F.; Li, Z.; Xia, W. Org. Lett. 2013, 15, 624.
[21] Wang, Z.; Li, L.; Huang, Y. J. Am. Chem. Soc. 2014, 136, 12233.
[22] Zhang, C.; Wang, X.; Jiao, N. Synlett 2014, 45, 1458.
[23] Maji, A.; Rana, S.; Akanksha; Maiti, D. Angew. Chem., Int. Ed. 2014, 53, 2428.
[24] Yu, J.; Yang, H.; Jiang, Y.; Fu, H. Chem.-Eur. J. 2013, 19, 4271.
[25] Song, R. J.; Liu, Y.; Hu, R. X.; Liu, Y. Y.; Wu, J. C.; Yang, X. H.; Li, J. H. Adv. Synth. Catal. 2011, 353, 1467.
[26] Paria, S.; Halder, P.; Paine, T. K. Angew. Chem., Int. Ed. 2012, 51, 6299.
[27] Sathyanarayana, P.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. Org. Biomol. Chem. 2015, 13, 9681.
[28] Tsang, A. S. K.; Kapat, A.; Schoenebeck, F. J. Am. Chem. Soc. 2016, 138, 518.
[29] Lan, J.; Lin, J.; Chen, Z.; Yin, G. ACS Catal. 2015, 5, 2035.
[30] Zhang, C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 15257.
[31] Xiaoqiang, H.; Xinyao, L.; Miancheng, Z.; Song, S.; Conghui, T.; Yizhi, Y.; Ning, J. J. Am. Chem. Soc. 2014, 136, 14858.
[32] Ma, R.; He, L.-N.; Liu, A.-H.; Song, Q.-W. Chem. Commun. 2016, 52, 2145.
[33] Parthasarathi, S.; Satrajit, I.; Kaliappan, K. P. Org. Lett. 2014, 16, 6212.
[34] Tang, C.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 6528.
[35] Ding, W.; Song, Q. Org. Chem. Front. 2015, 2, 765.
[36] Chen, X.; Chen, T.; Li, Q.; Zhou, Y.; Han, L.-B.; Yin, S.-F. Chem.-Eur. J. 2014, 20, 12234.
[37] Zhang, C.; Xu, Z.; Shen, T.; Wu, G.; Zhang, L.; Jiao, N. Org. Lett. 2012, 14, 2362.
[38] Sun, J.; Tan, Q.; Yang, W.; Liu, B.; Xu, B. Adv. Synth. Catal. 2014, 356, 388.
[39] Yan, Y.; Shi, M.; Niu, B.; Meng, X.; Zhu, C.; Liu, G.; Chen, T.; Liu, Y. RSC Adv. 2016, 6, 36192.
[40] Hattori, T.; Takakura, R.; Ichikawa, T.; Sawama, Y.; Monguchi, Y.; Sajiki, H. J. Org. Chem. 2016, 81, 2737.
[41] Zhou, Y.; Rao, C.; Mai, S.; Song, Q. J. Org. Chem. 2016, 81, 2027.
[42] Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. Org. Lett. 2015, 17, 1786.
[43] Liu, H.; Dong, C.; Zhang, Z.; Wu, P.; Jiang, X. Angew. Chem., Int. Ed. 2012, 51, 12570.
[44] Liu, H.; Jiang, X. Synlett 2013, 24, 1311.
[45] Guo, R.; Zhu, C.; Sheng, Z.; Li, Y.; Yin, W.; Chu, C. Tetrahedron Lett. 2015, 56, 6223.
[46] Rao, S. N.; Mohan, D. C.; Adimurthy, S. Tetrahedron 2016, 72, 4889.
/
〈 |
|
〉 |