综述与进展

氧气参与的无张力碳-碳单键断裂反应研究进展

  • 吴空 ,
  • 宋婵 ,
  • 崔冬梅
展开
  • 浙江工业大学药学院 杭州 310014

收稿日期: 2016-09-28

  修回日期: 2016-10-28

  网络出版日期: 2016-11-17

Advances of Unstrained Carbon-Carbon Single Bond Cleavage with Oxygen

  • Wu Kong ,
  • Song Chan ,
  • Cui Dongmei
Expand
  • College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014

Received date: 2016-09-28

  Revised date: 2016-10-28

  Online published: 2016-11-17

摘要

无张力碳-碳单键广泛存在于各类有机化合物中,该类型键断裂反应的研究是有机合成最重要同时也是最具有挑战性的课题之一.氧化断裂是无张力碳-碳单键断裂主要方式,特别是过渡金属催化的氧化断裂反应,近年来取得了重大进展.氧气作为最廉价、环保的氧化剂,已广泛用于各类有机化学反应.根据是否需要过渡金属催化,分类综述了近十年来氧气参与的无张力碳-碳单键断裂反应研究进展.

本文引用格式

吴空 , 宋婵 , 崔冬梅 . 氧气参与的无张力碳-碳单键断裂反应研究进展[J]. 有机化学, 2017 , 37(3) : 586 -602 . DOI: 10.6023/cjoc201609030

Abstract

Unstrained carbon-carbon single bonds are ubiquitous in organic compounds, the cleavage of this bond is one of the most significant and challenging subject in organic chemistry. Oxidative cleavage of unstrained carbon-carbon single bond has become a great tendency, in particular, the transition metal-catalyzed oxidative cleavage reaction, which had made significant progress in recent years. Oxygen, as the most inexpensive and environmentally friendly oxidant, has been widely used in various organic reactions. This review is an overview of recent advances of unstrained carbon-carbon single bond cleavage with oxygen according to whether transition metal catalysis is needed.

参考文献

[1] (a) Padwa, A.; Zhang, H. J. Org. Chem. 2007, 72, 2570.
(b) Ikeda, S.; Shibuya, M.; Iwabuchi, Y. Chem. Commun. 2007, 38, 504.
[2] (a) Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044.
(b) Hu, S.; Shima, T.; Hou, Z. Nature 2014, 512, 413.
[3] Seo, J.-H.; Lee, S.-M.; Lee, J.; Park, J.-B. J. Biotechnol. 2015, 216, 158.
[4] (a) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(b) Ruhland, K. Eur. J. Org. Chem. 2012, 2012, 2683.
(c) Jun, C. H. Chem. Soc. Rev. 2004, 33, 610.
(d) Liu, H.; Feng, M.; Jiang, X. Chem.-Asian J. 2014, 9, 3360.
(e) Dermenci, A.; Coe, J. W.; Dong, G. Org. Chem. Front. 2014, 1, 567.
(f) Amadio, E.; Di Lorenzo, R.; Zonta, C.; Licini, G. Coord. Chem. Rev. 2015, 301-302, 147.
(g) Murakami, M.; Ito, Y. Top. Organomet. Chem. 1999, 3, 97.
[5] Miyaura, N.; Suzuki, A.; Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1979, 19, 866.
[6] Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.
[7] Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
[8] Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Sutton, A. D.; Thorn, D. L. J. Am. Chem. Soc. 2009, 131, 428.
[9] Kirihara, M.; Yoshida, K.; Noguchi, T.; Naito, S.; Matsumoto, N.; Ema, Y.; Torii, M.; Ishizuka, Y.; Souta, I. Tetrahedron Lett. 2010, 51, 3619.
[10] Rozhko, E.; Raabova, K.; Macchia, F.; Malmusi, A.; Righi, P.; Accorinti, P.; Alini, S.; Babini, P.; Cerrato, G.; Manzoli, M.; Cavani, F. ChemCatChem 2013, 5, 1998.
[11] Liu, Z.-Q.; Zhao, L.; Shang, X.; Cui, Z. Org. Lett. 2012, 14, 3218.
[12] Zhao, Y.; Cai, S.; Li, J.; Wang, D. Z. Tetrahedron 2013, 69, 8129.
[13] Tnay, Y. L.; Chiba, S. Chem.-Asian J. 2015, 10, 873.
[14] Cooke, H. A.; Peck, S. C.; Evans, B. S.; van der Donk, W. A. J. Am. Chem. Soc. 2012, 134, 15660.
[15] Chen, Y. C.; Zhu, M. K.; Loh, T. P. Org. Lett. 2015, 17, 2712.
[16] Zhang, L; Bi, X. H.; Guan, X. X.; Li, Q.; Barry, B. D.; Liao, P. Q. Angew. Chem., Int. Ed. 2013, 52, 11303.
[17] Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y.-F.; Jiao, N. Org. Lett. 2015, 17, 2542.
[18] Xing, Q.; Lv, H.; Xia, C.; Li, F. Chem. Commun. 2016, 52, 489.
[19] Wang, J.; Chen, W.; Zuo, S.; Liu, L.; Zhang, X.; Wang, J. Angew. Chem., Int. Ed. 2012, 51, 12334.
[20] Sun, H.; Yang, C.; Gao, F.; Li, Z.; Xia, W. Org. Lett. 2013, 15, 624.
[21] Wang, Z.; Li, L.; Huang, Y. J. Am. Chem. Soc. 2014, 136, 12233.
[22] Zhang, C.; Wang, X.; Jiao, N. Synlett 2014, 45, 1458.
[23] Maji, A.; Rana, S.; Akanksha; Maiti, D. Angew. Chem., Int. Ed. 2014, 53, 2428.
[24] Yu, J.; Yang, H.; Jiang, Y.; Fu, H. Chem.-Eur. J. 2013, 19, 4271.
[25] Song, R. J.; Liu, Y.; Hu, R. X.; Liu, Y. Y.; Wu, J. C.; Yang, X. H.; Li, J. H. Adv. Synth. Catal. 2011, 353, 1467.
[26] Paria, S.; Halder, P.; Paine, T. K. Angew. Chem., Int. Ed. 2012, 51, 6299.
[27] Sathyanarayana, P.; Ravi, O.; Muktapuram, P. R.; Bathula, S. R. Org. Biomol. Chem. 2015, 13, 9681.
[28] Tsang, A. S. K.; Kapat, A.; Schoenebeck, F. J. Am. Chem. Soc. 2016, 138, 518.
[29] Lan, J.; Lin, J.; Chen, Z.; Yin, G. ACS Catal. 2015, 5, 2035.
[30] Zhang, C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 15257.
[31] Xiaoqiang, H.; Xinyao, L.; Miancheng, Z.; Song, S.; Conghui, T.; Yizhi, Y.; Ning, J. J. Am. Chem. Soc. 2014, 136, 14858.
[32] Ma, R.; He, L.-N.; Liu, A.-H.; Song, Q.-W. Chem. Commun. 2016, 52, 2145.
[33] Parthasarathi, S.; Satrajit, I.; Kaliappan, K. P. Org. Lett. 2014, 16, 6212.
[34] Tang, C.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 6528.
[35] Ding, W.; Song, Q. Org. Chem. Front. 2015, 2, 765.
[36] Chen, X.; Chen, T.; Li, Q.; Zhou, Y.; Han, L.-B.; Yin, S.-F. Chem.-Eur. J. 2014, 20, 12234.
[37] Zhang, C.; Xu, Z.; Shen, T.; Wu, G.; Zhang, L.; Jiao, N. Org. Lett. 2012, 14, 2362.
[38] Sun, J.; Tan, Q.; Yang, W.; Liu, B.; Xu, B. Adv. Synth. Catal. 2014, 356, 388.
[39] Yan, Y.; Shi, M.; Niu, B.; Meng, X.; Zhu, C.; Liu, G.; Chen, T.; Liu, Y. RSC Adv. 2016, 6, 36192.
[40] Hattori, T.; Takakura, R.; Ichikawa, T.; Sawama, Y.; Monguchi, Y.; Sajiki, H. J. Org. Chem. 2016, 81, 2737.
[41] Zhou, Y.; Rao, C.; Mai, S.; Song, Q. J. Org. Chem. 2016, 81, 2027.
[42] Zhou, M.; Chen, M.; Zhou, Y.; Yang, K.; Su, J.; Du, J.; Song, Q. Org. Lett. 2015, 17, 1786.
[43] Liu, H.; Dong, C.; Zhang, Z.; Wu, P.; Jiang, X. Angew. Chem., Int. Ed. 2012, 51, 12570.
[44] Liu, H.; Jiang, X. Synlett 2013, 24, 1311.
[45] Guo, R.; Zhu, C.; Sheng, Z.; Li, Y.; Yin, W.; Chu, C. Tetrahedron Lett. 2015, 56, 6223.
[46] Rao, S. N.; Mohan, D. C.; Adimurthy, S. Tetrahedron 2016, 72, 4889.

文章导航

/