锌催化的贝克曼重排反应
收稿日期: 2017-08-09
修回日期: 2017-09-03
网络出版日期: 2017-10-20
基金资助
浙江省一流学科(化学工程与工艺)和国家级大学生创新创业训练计划(No.201710350018)资助项目.
Zn-Catalyzed Beckmann Rearrangement Reaction
Received date: 2017-08-09
Revised date: 2017-09-03
Online published: 2017-10-20
Supported by
Project supported by the First Class Discipline of Zhejiang Province (Chemical Engineering and Technology) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201710350018).
孙超 , 姚武冰 , 张斌 , 黄相韵 , 虞姜姜 . 锌催化的贝克曼重排反应[J]. 有机化学, 2018 , 38(2) : 457 -463 . DOI: 10.6023/cjoc201708018
The Beckmann rearrangement reactions generally require strong acids, and always suffer from harsh conditions and serious environmental pollutions which go against the principle of green chemistry. Base on the green zinc catalyst, highly efficient catalytic reaction of ketoxime by Beckmann rearrangement was developed. The acid-additives-free reactions proceed under mild conditions, and show broad functional-group compatibility. Moreover, through this highly active and available zinc catalyst, the Beckmann rearrangement reaction is further extended to a one-pot protocol using ketone and hydroxylamine hydrochloride as reactive materials. Featuring high atom-economy and broad substrate scopes, this novel method provided an attractive route for the Beckmann rearrangement reactions.
Key words: Beckmann rearrangement; zinc-catalysis; oxime; ketone; amide
[1] (a) Song, D.; Wang, L.; Xu, X. Chin. J. Org. Chem. 1991, 11, 276(in Chinese). (宋丹青, 王丽, 徐秀娟, 有机化学, 1991, 11, 276.)(b) Xu, X.; Wei, Z.; Bai, X. Chin. J. Org. Chem. 2006, 26, 354(in Chinese). (徐显秀, 魏忠林, 柏旭, 有机化学, 2006, 26, 354.)(c) Donaruma, L. G.; Heldt, W. Z. Org. React. 1960, 11, 1.
(d) Li, Q.; Yan, L.; Xia, D.; Shen, Y. Chin. J. Org. Chem. 2011, 31, 2034(in Chinese). (李倩, 严罗一, 夏定, 申永存, 有机化学, 2011, 31, 2034.)(e) Chen, X.; Ye, J.; Hu, A. Chin. J. Org. Chem. 2012, 32, 520(in Chinese). (陈晓东, 叶姣, 胡艾希, 有机化学, 2012, 32, 520.)(f) Li, J.; Cheng, C.; Zhang, X.; Li, Z.; Cai, F.; Xue, Y.; Liu, W. Chin. J. Chem. 2012, 30, 1687.
[2] For examples, see:(a) An, N.; Tian, B. -X.; Pi, H. -J.; Eriksson, L. A.; Deng, W. -P. J. Org. Chem. 2013, 78, 4297.
(b) Li, H.; Qin, J.; Yang, Z.; Guan, X.; Zhang, L.; Liao, P.; Li, X. Chem. Commun. 2015, 51, 8637.
(c) Mahajan, P. S.; Humne, V. T.; Tanpure, S. D.; Mhaske, S. B. Org. Lett. 2016, 18, 3450.
(d) Linares, M.; Vargas, C.; García, A.; Ochoa-Hernández, C.; Cekja, J.; García-Muñoz, R. A.; Serrano, D. P. Catal. Sci. Technol. 2017, 7, 181.
(e) Chu, Y.; Li, G.; Huang, L.; Yi, X.; Xia, H.; Zheng, A.; Deng, F. Catal. Sci. Technol. 2017, 7, 2512.
[3] Lee, B. S.; Chi, D. Y. Bull. Korean Chem. Soc. 1998, 19, 1373.
[4] An, N.; Pi, H.; Liu, L.; Du, W.; Deng, W. Chin. J. Chem. 2011, 29, 947.
[5] Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.
[6] Zhu, M.; Cha, C. -T.; Deng, W. -P.; Shi, X. -X. Tetrahedron Lett. 2006, 47, 4861.
[7] Srinivasa, R. N.; Buchi, R. R.; Mukkanti, K. Tetrahedron Lett. 2011, 52, 4888.
[8] Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. J. Am. Chem. Soc. 2000, 122, 1908.
[9] Guo, S.; Du, Z.; Zhang, S.; Li, D.; Li, Z.; Deng, Y. Green Chem. 2006, 8, 296.
[10] Ramalingan, C.; Park, Y. T. J. Org. Chem. 2007, 72, 4536.
[11] Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 311.
[12] Owston, N. A.; Parker, A. J.; Williams, J. M. Org. Lett. 2007, 9, 73.
[13] (a) Surya, K. D. Synth. Commun. 2004, 34, 3431.
(b) Owston, N. A.; Parker, A. J.; Williams, J. M. Org. Lett. 2007, 9, 3599.
[14] Raju, G.; Guguloth, V.; Satyanarayana, B. RSC Adv. 2016, 6, 45036.
[15] Xiao, L. -F.; Xia, C. -G.; Chen, J. Tetrahedron Lett. 2007, 48, 7218.
[16] Mishra, A.; Ali, A.; Upreti, S.; Gupta, R. Inorg. Chem. 2008, 47, 154.
[17] Li, J. -T.; Meng, X. -T.; Yin, Y. Synth. Commun. 2010, 40, 1445.
[18] Jefferies, L. R.; Weber, S. R.; Cook, S. P. Synlett 2015, 26, 331.
[19] (a) Komeda, M.; Ozaki, A.; Hayashi, K.; Sumimoto, M.; Hori, K.; Sugimoto, T.; Yamamoto, H. Int. J. Org. Chem. 2015, 5, 57.
(b) Yamamoto, H.; Komeda, M.; Ozaki, A.; Sumimoto, M.; Hori, K.; Sugimoto, T. Int. J. Org. Chem. 2015, 5, 147.
[20] Sharghi, H.; Hosseini, M. Synthesis-Stuttgart 2002, 8, 1057.
[21] Mahajan, S.; Sharma, B.; Kapoor, K. K. Tetrahedron Lett. 2015, 56, 1915.
[22] Anuradha, S.; Kumari, S.; Layek, D.; Pathak, D. J. Mol. Struct. 2017, 1130, 368.
[23] Zhu, Z.; Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Org. Lett. 2017, 19, 1370.
[24] Liu, X.; Xiao, L.; Wu, H.; Li, Z.; Xia, C. Catal. Commun. 2009, 10, 424.
[25] Xie, F.; Du, C.; Pang, Y.; Lian, X.; Xue, C.; Chen, Y.; Wang, X.; Cheng, M.; Guo, C.; Lin, B.; Liu, Y. Tetrahedron Lett. 2016, 57, 5820.
[26] Yu, J.; Lu, M. Org. Biomol. Chem. 2015, 13, 7397.
[27] Zhang, Q. -Q.; Dong, J.; Liu, Y. -M.; Cao, Y.; He, H. -Y.; Wang, Y. -D. Chem. Commun. 2017, 53, 2930.
[28] Teders, M.; Pitzer, L.; Buss, S.; Glorius, F. ACS Catal. 2017, 7, 4053.
[29] Chen, M.; Yu, L.; Ren, Z. -H.; Wang, Y. -Y.; Guan, Z. -H. Chem. Commun. 2017, 53, 6243.
[30] Liang, D.; Li, Y.; Gao, S.; Li, R.; Li, X.; Wang, B.; Yang, H. Green Chem. 2017, 19, 3344.
[31] Patel, P.; Borah, G. Chem. Commun. 2017, 53, 443.
[32] Jin, X.; Kataoka, K.; Yatabe, T.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2016, 55, 7212.
/
〈 |
|
〉 |