活性氧簇的小分子荧光探针研究进展
收稿日期: 2017-09-13
修回日期: 2017-10-17
网络出版日期: 2017-10-31
基金资助
国家自然科学基金(No.31371750)资助项目.
Review of the Small Molecular Fluorescent Sensors for Intracellular Reactive Oxygen Species
Received date: 2017-09-13
Revised date: 2017-10-17
Online published: 2017-10-31
Supported by
Project supported by the National Natrual Science Foundation of China (No. 31371750).
后际挺 , 李坤 , 覃彩芹 , 余孝其 . 活性氧簇的小分子荧光探针研究进展[J]. 有机化学, 2018 , 38(3) : 612 -628 . DOI: 10.6023/cjoc201709020
Among the numerous bio-active species which are involved in the various chemical reactions in our body, reactive oxygen species (ROS) are a class of important biological species, which are oxidative. ROS can maintain the intracellular redox balance and are tightly related with the cell growth and death. Hence, the fluorescence detection of intracellular ROS has attracted wide attention. However, owining to the inherent features of ROS, such as the short lifetime and high reactivity, fluorescence analysis of ROS is always faced with some problems, like low selectivity and side reactions. Herein, the development of small molecular fluorescent probes for intracellular ROS over the past decade is summarized, and the design mechanisms and bio-applications of these probes are emphasized.
[1] Suh, Y. A.; Arnold, R. S.; Lassegue, B.; Shi, J.; Xu, X.; Sorescu, D.; Chung, A. B.; Griendling, K. K.; Lambeth, J. D. Nature 1999, 401, 79.
[2] Koh, C. H.; Whiteman, M.; Li, Q. X.; Halliwell, B.; Jenner, A. M.; Wong, B. S.; Laughton, K. M.; Wenk, M.; Masters, C. L.; Beart, P. M.; Bernard, O.; Cheung, N. S. J. Neurochem. 2006, 98, 1278.
[3] Rhee, S. G. Science 2006, 312, 1882.
[4] Dickinson, B. C.; Srikun, D.; Chang, C. J. Curr. Opin. Chem. Biol. 2010, 14, 50.
[5] Peteu, S. F.; Boukherroub, R.; Szunerits S. Biosens. Bioelectron. 2014, 58, 359.
[6] Yamato, M.; Egashira, T.; Utsumi, H. Free Radical Biol. Med. 2003, 35, 1619.
[7] de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
[8] Berezin, M. Y.; Achilefu, S. Chem. Rev. 2010, 110, 2641.
[9] Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517.
[10] Pradhan, T.; Jung, H. S.; Jang, J. H.; Kim, T. W.; Kang, C.; Kim, J. S. Chem. Soc. Rev. 2014, 43, 4684.
[11] Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2011, 40, 4783.
[12] Chen, X.; Wang, F.; Hyun, J. Y.; Wei, T.; Qiang, J.; Ren, X.; Shin, I.; Yoon, J. Chem. Soc. Rev. 2016, 45, 2976.
[13] Nagano, T. J. Clin. Biochem. Nutr. 2009, 45, 111.
[14] Aratani, Y.; Koyama, H.; Nyui, S.-I.; Suzuki, K.; Kura, F.; Maeda, N. Infect. Immun. 1999, 67, 1828.
[15] Kenmoku, S.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 7313.
[16] Sun, Z.-N.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2008, 10, 2171.
[17] Hu, J. J.; Wong N.-K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D. Org. Lett. 2014, 16, 3544.
[18] Chen, X.; Wang, X.; Wang, S.; Shi, W.; Wang, K.; Ma, H. Chem. Eur. J. 2008, 14, 4719.
[19] Lin, W.; Long, L.; Chen, B.; Tan, W. Chem.-Eur. J. 2009, 15, 2305.
[20] Yuan, L.; Lin, W.; Song, J.; Yang, Y. Chem. Commun. 2011, 47, 12691.
[21] Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. Chem. Commun. 2013, 49, 1014.
[22] Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820.
[23] Hou, J.-T.; Wu, M.-Y.; Li, K.; Yang, J.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 8640.
[24] Hou, J.-T.; Li, K.; Yang, J.; Yu, K.-K.; Liao, Y.-X.; Ran, Y.-Z.; Liu, Y.-H.; Zhou, X.-D.; Yu, X.-Q. Chem. Commun. 2015, 51, 6781.
[25] Li, K.; Hou, J.-T.; Yang, J.; Yu, X.-Q. Chem. Commun. 2017, 53, 5539.
[26] Hu, J. J.; Wong, N.-K.; Lu, M.-Y.; Chen, X.; Ye, S.; Zhao, A. Q.; Gao, P.; Kao, R. Y.-T.; Shen, J.; Yang, D. Chem. Sci. 2016, 7, 2094.
[27] Yang, D.; Wang, H.-L.; Sun, Z.-N.; Chung, N.-W.; She, J.-G. J. Am. Chem. Soc. 2006, 128, 6004.
[28] Sun, Z.-N.; Wang, H.-L.; Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2009, 11, 1887.
[29] Peng, T.; Yang, D. Org. Lett. 2010, 12, 4932.
[30] Peng, T.; Wong, N.-K.; Chen, X.; Chan, Y.-K.; Ho, D. H.-H.; Sun, Z.; Hu, J. J.; Shen, J.; El-Nezami, H.; Yang, D. J. Am. Chem. Soc. 2014, 136, 11728.
[31] Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 10640.
[32] Yu, F.; Li, P.; Li, G.; Zhao, G.; Chu, T.; Han, K. J. Am. Chem. Soc. 2011, 133, 11030.
[33] Xu, K.; Chen, H.; Tian, J.; Ding, B.; Xie, Y.; Qiang, M.; Tang, B. Chem. Commun. 2011, 47, 9468.
[34] Yu, F.; Li, P.; Wang, B.; Han, K. J. Am. Chem. Soc. 2013, 135, 7674.
[35] Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2010, 132, 2795.
[36] Hou, J.-T.; Yang, J.; Li, K.; Liao, Y.-X.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. Chem. Commun. 2014, 50, 9947.
[37] Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y. T. J. Am. Chem. Soc. 2017, 139, 285.
[38] Li, Y.; Xie, X.; Yang, X.; Li, M.; Jiao, X.; Sun, Y.; Wang, X.; Tang, B. Chem. Sci. 2017, 8, 4006.
[39] Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2004, 126, 15392.
[40] Albers, A. E.; Okreglak, V. S.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 9640.
[41] Miller, E. W.; Tulyathan, O.; Isacoff, E. Y.; Chang, C. J. Nat. Chem. Biol. 2007, 3, 263.
[42] Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.
[43] Dickinson, B. C.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 9638.
[44] Albers, A. E.; Dickinson, B. C.; Miller, E. W.; Chang, C. J. Bioorg. Med. Chem. Lett. 2008, 18, 5948.
[45] Chung, C.; Srikun, D.; Lim, C. S.; Chang, C. J.; Cho, B. R. Chem. Commun. 2011, 47, 9618.
[46] Masanta, G.; Heo, C. H.; Lim, C. S.; Bae, S. K.; Cho, B. R.; Kim, H. M. Chem. Commun. 2012, 48, 3518.
[47] Karton-Lifshin, N.; Segal, E.; Omer, L.; Portnoy, M.; Satchi-Fainaro, R.; Shabat, D. J. Am. Chem. Soc. 2011, 133, 10960.
[48] Xu, M.; Han, J.-M.; Zhang, Y.; Yang, X.; Zang, L. Chem. Commun. 2013, 49, 11779.
[49] Xu, M.; Han, J.-M.; Wang, C.; Yang, X.; Pei, J.; Zang, L. ACS Appl. Mater. Interfaces 2014, 6, 8708.
[50] Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 924.
[51] Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Zhang, D. Tetrahedron Lett. 2014, 55, 1471.
[52] Xu, J.; Li, Q.; Yue, Y.; Guo, Y.; Shao, S. Biosens. Bioelectron. 2014, 56, 58.
[53] Sawaki, Y.; Foote, C. S. J. Am. Chem. Soc. 1979, 101, 6292.
[54] Abo, M.; Urano, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.; Nagano, T. J. Am. Chem. Soc. 2011, 133, 10629.
[55] Zhang, K.-M.; Dou, W.; Li, P.-X.; Shen, R.; Ru, J.-X.; Liu, W.; Cui, Y.-M.; Chen, C.-Y.; Liu, W.-S.; Bai, D.-C. Biosens. Bioelectron. 2015, 64, 542.
[56] Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. Chem. Commun. 2012, 48, 4980.
[57] Liao, Y.-X.; Li, K.; Wu, M.-Y.; Wu, T.; Yu, X.-Q. Org. Biomol. Chem. 2014, 12, 3004.
[58] Dong, B.; Song, X.; Kong, X.; Wang, C.; Tang, Y.; Liu, Y.; Lin, W. Adv. Mater. 2016, 28, 8755.
[59] Zhou, X.; Lesiak, L.; Lai, R.; Beck, J. R.; Zhao, J.; Elowsky, C. G.; Li, H.; Stains, C. I. Angew. Chem., Int. Ed. 2017, 56, 4197.
[60] Tang, B.; Zhang, L.; Zhang, L. L. Anal. Biochem. 2004, 326, 176.
[61] Gao, J. J.; Xu, K. H.; Tang, B.; Yin, L. L.; Yang, G. W.; An, L. G. FEBS J. 2007, 274, 1725.
[62] Li, P.; Zhang, W.; Li, K.; Liu, X.; Xiao, H.; Zhang, W.; Tang, B. Anal. Chem. 2013, 85, 9877.
[63] Maeda, H.; Yamamoto, K.; Nomura, Y.; Kohno, I.; Hafsi, L.; Ueda, N.; Yoshida, S.; Fukuda, M.; Fukuyasu, Y.; Yamauchi, Y.; Itoh, N. J. Am. Chem. Soc. 2005, 127, 68.
[64] Maeda, H.; Yamamoto, K.; Kohno, I.; Hafsi, L.; Itoh, N.; Nakagawa, S.; Kanagawa, N.; Suzuki, K.; Uno, T. Chem.-Eur. J. 2007, 13, 1946.
[65] Zhang, W.; Li, P.; Yang, F.; Hu, X.; Sun, C.; Zhang, W.; Chen, D.; Tang, B. J. Am. Chem. Soc. 2013, 135, 14956.
[66] Zhang, J. J.; Li, C. W.; Zhang, R.; Zhang, F. Y.; Liu, W.; Liu, X. Y.; Lee, S. M. Y.; Zhang, H. X. Chem. Commun. 2016, 52, 2679.
[67] Xiao, H. B.; Liu, X.; Wu, C. C.; Wu, Y. H.; Li, P.; Guo, X. M.; Tang, B. Biosens. Bioelectron. 2017, 91, 449.
[68] Li, R. Q.; Mao, Z. Q.; Rong, L.; Wu, N.; Lei, Q.; Zhu, J. Y.; Zhuang, L.; Zhang, X. Z.; Liu, Z. H. Biosens. Bioelectron. 2017, 87, 73.
[69] Pou, S.; Huang, Y. I.; Bhan, A.; Bhadti, V. S.; Hosmane, R. S.; Wu, S. Y.; Cao, G. L.; Rosen, G. M. Anal. Biochem. 1993, 212, 85.
[70] Yang, X.-F.; Guo, X.-Q. Anal. Chim. Acta 2001, 434, 169.
[71] Yang, X. F.; Guo, X. Q. Analyst 2001, 126, 1800.
[72] Li, P.; Xie, T.; Duan, X.; Yu, F.; Wang, X.; Tang, B. Chem.-Eur. J. 2010, 16, 1834.
[73] Yuan, L.; Lin, W.; Song, J. Chem. Commun. 2010, 46, 7930.
[74] Wang, J. Y.; Liu, Z. R.; Ren, M. G.; Kong, X. Q.; Liu, K. Y.; Deng, B. B.; Lin, W. Y. Sens. Actuators, B 2016, 236, 60.
[75] Kim, M.; Ko, S.-K.; Kim, H.; Shin, I.; Tae, J. Chem. Commun. 2013, 49, 7959.
[76] Meng, L.; Wu, Y.; Yi, T. Chem. Commun. 2014, 50, 4843.
[77] Liu, F.; Du, J.; Song, D.; Xu, M. Y.; Sun, G. P. Chem. Commun. 2016, 52, 4636.
[78] Steinbeck, M. J.; Khan, A. U.; Karnovsky, M. J. J. Biol. Chem. 1992, 267, 13425.
[79] Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. Angew. Chem., Int. Ed. 1999, 38, 2899.
[80] Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. J. Am. Chem. Soc. 2001, 123, 2530.
[81] Kim, S.; Tachikawa, T.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2014, 136, 11707.
[82] Xu, K.; Wang, L.; Qiang, M.; Wang, L.; Li, P.; Tang, B. Chem. Commun. 2011, 47, 7386.
[83] Aubry, J.-M.; Pierlot, C.; Rigaudy, J.; Schmidt, R. Acc. Chem. Res. 2003, 36, 668.
[84] Song, D.; Cho, S.; Han, Y.; You, Y.; Nam, W. Org. Lett. 2013, 15, 3582.
/
〈 |
|
〉 |