综述与进展

氨基酸多相催化转化研究进展

  • 王胜 ,
  • 许孝良 ,
  • 李小年
展开
  • 浙江工业大学化学工程学院 杭州 310014

收稿日期: 2017-09-04

  修回日期: 2017-10-12

  网络出版日期: 2017-11-03

基金资助

浙江省自然科学基金(No.LY18B020018)资助项目.

Progress on the Transformations of Amino Acids by Heterogeneous Catalysis

  • Wang Sheng ,
  • Xu Xiaoliang ,
  • Li Xiaonian
Expand
  • College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2017-09-04

  Revised date: 2017-10-12

  Online published: 2017-11-03

Supported by

Project supported by the Natural Science Foundation of Zhejiang Province (No. LY18B020018).

摘要

氨基酸的催化转化是实现氨基酸在化学和生物领域利用的重要手段.综述了氨基酸催化加氢制手性氨基醇、催化脱羧制胺类和腈类、催化脱氨制羧酸及其衍生物、催化热解制生物燃料及作为多相手性催化剂的应用的研究进展.在氨基酸催化加氢中,Ru基和Rh基催化剂展现了较好的催化性能,而反应温度是影响产物光学纯度的主要因素.脱羧反应、脱氨反应和热解反应需要相对较高的温度,对能耗要求较大.寻找高活性和高选择性的多相催化剂实现反应温度和压力的降低是今后的研究方向.而氨基酸作为多相手性催化剂,其研究的重点应在催化剂的效率及分离回收利用上.

本文引用格式

王胜 , 许孝良 , 李小年 . 氨基酸多相催化转化研究进展[J]. 有机化学, 2018 , 38(3) : 565 -574 . DOI: 10.6023/cjoc201709003

Abstract

The catalytic transformation of amino acids is one of the important routes in utilization of amino acids in chemical and biological fields. In this review, catalytic hydrogenation from amino acids to chiral amino alcohols, catalytic decarboxylation to produce amine and nitrile, catalytic deamination to produce carboxylic acid and its derivatives, catalytic pyrolysis to produce bio-fuel and the application as heterogeneous chiral catalyst were summarized. In the catalytic hydrogenation of amino acids, Ru and Rh-based catalysts showed better catalytic performance, and the temperature was a main factor on the optical purity of the product. The decarboxylation, deamination and pyrolysis reaction required relatively high temperature, which needed a large amount of energy consumption. The search of high activity and selectivity heterogeneous catalyst to achieve the reduction of the reaction temperature and pressure is the focus of future research. As the heterogeneous chiral catalyst, the research should be focus on the efficiency, seperation and recycling of the catalyst.

参考文献

[1] (a) Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
(b) Sheldon, R. A. Green Chem. 2014, 16, 950.
(c) Gilkey, M. J.; Xu, B. ACS Catal. 2016, 6, 1420.
[2] Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Science 2012, 337, 695.
[3] Breuer, M.; Ditrich, K.; Habicher, T.; Hauer, B.; Kesseler, M.; Stürmer, R.; Zelinski, T. Angew. Chem., Int. Ed. 2004, 43, 788.
[4] Demain, A. L. Ind. Biotech. 2007, 3, 269.
[5] Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551.
[6] Rogers, G. A.; Parsons, S. M.; Anderson, D. C.; Nilsson, L. M.; Bahr, B. A.; Kornreich, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217.
[7] Corey, E. J.; Zhang, F. Y. Angew. Chem., Int. Ed. 1999, 38, 1931.
[8] (a) Abdelrahman, O. A.; Heyden, A.; Bond, J. Q. ACS Catal. 2014, 4, 1171.
(b) Tan, J.; Cui, J.; Cui, X.; Deng, T.; Li, X.; Zhu, Y.; Li, Y. ACS Catal. 2015, 5, 7379.
(c) Zhou, M.; Zhang, H.; Ma, H.; Ying, W. Ind. Eng. Chem. Res. 2017, 56, 8833.
[9] (a) Wang, F.; Zhang, Z. ACS Sustainable Chem. Eng. 2016, 5, 942.
(b) Adkins, H.; Pavlic, A. A. J. Am. Chem. Soc. 1947, 69, 3039.
(c) Zhu, Y.; Zhu, Y.; Ding, G.; Zhu, S.; Zheng, H.; Li, Y. Appl. Catal., A 2013, 468, 296.
(d) Zheng, X.; Lin, H.; Zheng, J.; Duan, X.; Yuan, Y. ACS Catal. 2013, 3, 2738.
[10] Di, X.; Li, C.; Zhang, B.; Qi, J.; Li, W.; Su, D.; Liang, C. Ind. Eng. Chem. Res. 2017, 56, 4672.
[11] Primo, A.; Concepción, P.; Corma, A. Chem. Commun. 2011, 47, 3613.
[12] Fan, G.; Zhou, Y.; Fu, H.; Ye, X.; Li, R.; Chen, H.; Li, X. Chin. J. Chem. 2011, 29, 229.
[13] Adkins, H., Billica, H. R. J. Am. Chem. Soc. 1948, 70, 3121.
[14] (a) Antons, S.; Beitzke, B. DE 4428106, 1996[Chem. Abstr. 1996, 124, 288759].
(b) Antons, S. DE 4444109, 1996[Chem. Abstr. 1996, 125, 114175].
[15] Antons, S.; Tilling, A. S.; Wolters, E. WO 9938838, 1999[Chem. Abstr. 1999, 131, 130283].
[16] Mägerlein, W.; Dreisbach, C.; Hugl, H.; Tse, M. K.; Klawonn, M.; Bhor, S.; Beller, M. Catal. Today 2007, 121, 140.
[17] Metkar, P. S.; Scialdone, M. A.; Moloy, K. G. Green Chem. 2014, 16, 4575.
[18] Gong, D.-C.; Tu, Z.-Y.; He, H.-H.; Wei, P.; Ou Yang, P.-K. Mod. Chem. Ind. 2007, 27, 151(in Chinese). (龚大春, 涂志英, 何红华, 韦萍, 欧阳平凯, 现代化工, 2007, 27, 151.)
[19] Tamura, M.; Tamura, R.; Takeda, Y.; Nakagawa, Y.; Tomishige, K. Chem. Commun. 2014, 50, 6656.
[20] Jere, F. T. Ph.D. Dissertation, Michigan State University, East Lansing, 2003.
[21] Tamura, M.; Tamura, R.; Takeda, Y.; Nakagawa, Y.; Tomishige, K. Chem.-Eur. J. 2015, 21, 3097.
[22] Holladay, J. E.; Werpy, T. A.; Muzatko, D. S. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4~7, Breckenridge, Humana Press, Clifton, 2003, pp. 857~869.
[23] Jere, F. T.; Miller, D. J.; Jackson, J. E. Org. Lett. 2003, 5, 527.
[24] Wang, Y. M.S. Thesis, Tianjin University, Tianjin, 2007(in Chinese). (王毅, 硕士论文, 天津大学, 天津, 2007.)
[25] He, H.-H. M.S. Thesis, Nanjing Tech University, Nanjing, 2005(in Chinese). (何洪华, 硕士论文, 南京工业大学, 南京, 2005.)
[26] Zwietering, T. N. Chem. Eng. Sci. 1958, 8, 244.
[27] Jere, F. T.; Jackson, J. E.; Miller, D. J. Ind. Eng. Chem. Res. 2004, 43, 3297.
[28] Bhandare, S. G.; Vaidya, P. D. Ind. Eng. Chem. Res. 2017, 56, 3797.
[29] Pimparkar, K. P.; Miller, D. J.; Jackson, J. E. Ind. Eng. Chem. Res. 2008, 47, 7648.
[30] Roose, P.; Eller, K.; Henkes, E.; Rossbacher, R.; Höke, H. Amines, Aliphatic in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Weinheim, Germany, 2015, pp. 1~55.
[31] Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J. P.; Boutevin, B. Chem. Rev. 2016, 116, 14181.
[32] De Schouwer, F.; Claes, L.; Claes, N.; Bals, S.; Degrève, J.; De Vos, D. E. Green Chem. 2015, 17, 2263.
[33] Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E. M.; Bals, S.; Kirschhock, C. E. A.; De Vos, D. E. ACS Catal. 2016, 6, 7303.
[34] Verduyckt, J.; Coeck, R.; De Vos, D. E. ACS Sustainable Chem. Eng. 2017, 5, 3290.
[35] Claes, L.; Verduyckt, J.; Stassen, I.; Lagrain, B.; De Vos, D. E. Chem. Commun. 2015, 51, 6528.
[36] Claes, L.; Matthessen, R.; Rombouts, I.; Stassen, I.; De Baerdemaeker, T.; Depla, D.; Delcour, J. A.; Lagrain, B.; DeVos, D. E. ChemSusChem 2015, 8, 345.
[37] De Schouwer, F.; Cuypers, T.; Claes, L.; De Vos, D. E. Green Chem. 2017, 19, 1866.
[38] Liu, G.; Wright, M. M.; Zhao, Q.; Brown, R. C.; Wang, K.; Xue, Y. Energy Convers. Manage. 2016, 112, 220.
[39] Yi, L.; Liu, H.; Lu, G.; Zhang, Q.; Wang, J.; Hu, H.; Yao, H. Energ. Fuel. 2017, 31, 9484.
[40] Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 1971, 10, 496.
[41] List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
[42] List, B. Tetrahedron 2002, 58, 5573.
[43] (a) Wang, J.-Z. M.S. Thesis, Beijing University of Chemical Technology, Beijing, 2011(in Chinese). (王玖钊, 硕士论文, 北京化工大学, 北京, 2011.)
(b) Gruttadauria, M.; Giacalone, F.; Noto, R. Adv. Synth. Catal. 2009, 351, 33.
(c) Doyagüez, E. G.; Calderon, F.; Sanchez, F.; Fernandez-Mayoralas, A. J. Org. Chem. 2007, 72, 9353.
[44] Gao, J.; Liu, J.; Jiang, D.; Xiao, B.; Yang, Q. J. Mol. Catal. A:Chem. 2009, 313, 79.
[45] An, Z.; Zhang, W.; Shi, H.; He, J. J. Catal. 2006, 241, 319.
[46] An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal. 2014, 4, 2566.

文章导航

/