吖啶衍生物的合成及应用
收稿日期: 2017-10-09
修回日期: 2017-10-19
网络出版日期: 2017-11-03
基金资助
国家自然科学基金(No.21462043)资助项目.
Synthesis and Application of Acridine Derivatives
Received date: 2017-10-09
Revised date: 2017-10-19
Online published: 2017-11-03
Supported by
Project supported by the National Natural Science Foundation of China (No. 21462043).
由于吖啶特殊的结构、功能单元和在诸多领域的重要应用,对吖啶的研究在国内外重新成为热点.大的共轭环使其在荧光方面有着标记和成像等作用,而作为能够嵌入到DNA链中的化合物在医药等领域有着广泛的应用,在染料方面与天然产物的色价非常相似,此外作为光电材料化合物在有机半导体材料中代替金属半导体材料也展现出很好的潜在价值.近年来出现了微波辅助、无金属催化、一锅法合成等多种绿色、简便的合成方法和有机半导体材料等新的研发领域,为吖啶的合成和应用方面带来了更多的关注.介绍了2010年以来吖啶衍生物的各类合成方法及在医药、荧光材料、工业染料以及电致发光等诸多领域中的应用,并介绍了本课题组在吖啶研究方面的工作以及合成吖啶衍生物的新进展,最后对吖啶衍生物的合成与应用前景进行了展望.
松布尔, 李明辉, 穆赫塔尔·伊米尔艾山 . 吖啶衍生物的合成及应用[J]. 有机化学, 2018 , 38(3) : 594 -611 . DOI: 10.6023/cjoc201710007
Due to the special functional structural units and important applications in many fields, the study of acridine derivatives has become a hot topic worldwide. The large conjugated ring enables these dyes to be markers for fluorescence and imaging. Thanks to the ability of embedding into DNA chain, they have a wide range of applications in medicine and other fields. These dyes have the very similar color index value to that of the natural compounds. As an alternative to metal semiconductor material, acridines have presented potential value in the field of organic semiconductor materials. In recent years, emerging of the new and simple preparation technique, such as microwave assisted synthesis, metal free catalysis, one pot synthesis, and so on, has brought more attention to the synthesis and application of acridines. In this paper, various synthetic methods of acridine derivatives since 2010 and their applications in medicine, fluorescent materials, industrial dyeing materials and electroluminescence are introduced. The work about acridines accomplished in our group is also introduced. In the end, the future prospective of synthesis and application of acridine derivatives is proposed.
[1] Martins, M. A. P.; Frizzo, C. P.; Moreira, D. N.; Buriol, L.; Machado, P. Chem. Rev. 2009, 109, 4140.
[2] Kalirajan, R.; Muralidharan, V.; Jubie, S.; Gowramma, B.; Gomathy, S.; Sankar, S.; Elango, K. J. Heterocycl. Chem. 2012, 49, 748.
[3] Bonse, S.; Santelli, R. C.; Barbe, J.; Krauth-Siegel, R. L. J. Med. Chem. 1999, 42, 5448.
[4] Nadaraj, V.; Selvi, S. T.; Mohan, S. Eur. J. Med. Chem. 2009, 44, 976.
[5] Wilson, W. R.; Thompson, L. H.; Anderson, R. F.; Denny, W. A. J. Med. Chem. 1989, 32, 31.
[6] Bastianelli, C.; Caia, V.; Cum, G.; Gallo, R.; Mancini, V. J. Chem. Soc., Perkin Trans. 21991, 679.
[7] Jaycox, D.; Gribble, G. W.; Hacker, J. Heterocycl. Chem. 1987, 24, 1405.
[8] Zhang, X.-P.; Shi, H.-L.; Yan, M. Med. Ind. 1984, 3, 8(in Chinese). (张秀平, 时惠麟, 颜闵, 医药工业, 1984, 3, 8.)
[9] Velingkar, V. S.; Dandekar, V. D. Chin. J. Chem. 2011, 29, 504.
[10] Ferreira, R.; Avinó, A.; Mazzini, S.; Eritja, R. Molecules 2012, 17, 7067.
[11] Geddes, C. D. Dyes Pigm. 2000, 45, 243.
[12] Goel, A.; Kumar, V.; Singh, S. P.; Sharma, A.; Prakash, S.; Singh, C.; Anand, R. S. J. Mater. Chem. 2012, 22, 14880.
[13] Chen, P.; Wang, Y.-Y.; Zhang, Y. M.; Zhang, X. A. Acta Chim. Sinica 2016, 74, 669(in Chinese). (陈鹏, 王宇洋, 张宇模, 张晓安, 化学学报, 2016, 74, 669.)
[14] Bernthsen, A. Ann. 1878, 192, 1.
[15] Bernthsen, A. Ann. 1884, 224, 1.
[16] Popp, F. D. J. Org. Chem. 1962, 27, 2658.
[17] Roopan, S. M.; Nawaz Khan, F. R. Med. Chem. Res. 2011, 20, 732.
[18] Das, S.; Thakur, A. J. Green Chem. Lett. Rev. 2011, 4, 131.
[19] Avila, J. M.; Vargas, F. D.; Camacho, S. P. D.; Rivero, I. A. RSC Adv. 2012, 2, 1827.
[20] Kaur, B.; Kumar, H. J. Chem. Sci. 2013, 125, 989.
[21] Kaur, B.; Parmar, A.; Kumar, H. Heterocycl. Lett. 2011, 1, 59.
[22] Kaur, B.; Parmar, A.; Kumar, H. Synth. Commun. 2012, 42, 453.
[23] Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Heterocycl. Commun. 2009, 15, 57.
[24] Gómez, A. H.; Herd, E.; Uzelac, M.; Cadenbach, T.; Kennedy, A. R.; Borilovic, I.; Aromí, G.; Hevia, E. Organometallics 2015, 34, 2614.
[25] Kozlov, N. G.; Bondarev, S. L.; Kadutskii, A. P.; Basalaeva, L. I. Zh. Org. Khim. 2010, 46, 209.
[26] Kozlov, N. G.; Bondarev, S. L.; Knyukshto, V. N.; Odnoburtsev, B. A.; Basalaeva, L. I. Zh. Org. Khim. 2010, 46, 1639.
[27] Kozlov, N. G. Zh. Org. Khim. 2011, 47, 1675.
[28] Kozlov, N. G.; Gusak, K. N. Zh. Org. Khim. 2006, 42, 1680.
[29] Kozlov, N. G.; Tereshko, A. B.; Gusak, K. N. Zh. Org. Khim. 2006, 42, 281.
[30] Kozlov, N. G.; Gusak, K. N. Zh. Obshch. Khim. 2006, 76, 294.
[31] Silaichev, P. S.; Dmitriev, M. V.; Aliev, Z. G.; Maslivets, A. N. Zh. Org. Khim. 2010, 46, 1173.
[32] Romain, M.; Tondelier, D.; Geffroy, B.; Shirinskaya, A.; Jeannin, O.; Berthelot, J. R.; Poriel, C. Chem. Commun. 2015, 51, 1313.
[33] Ghadari, R.; Hajishaabanha, F.; Mahyari, M.; Shaabani, A.; Khavasi, H. R. Tetrahedron Lett. 2012, 53, 4018.
[34] Ghorbani-Vaghei, R.; Malaekehpoor, S. M. J. Iran. Chem. Soc. 2010, 7, 957.
[35] Yesildag, I.; Ulus, R.; Basar, E.; Aslan, M.; Kaya, M.; Buülbül, M. Monatsh Chem. 2014, 145, 1027.
[36] Mahajan, S.; Khullar, S.; Mandal, S. K.; Singh, I. P. Chem. Commun. 2014, 50, 10078.
[37] Yang, X. J.; Zhang, C.; Wu, L. Q. RSC Adv. 2015, 5, 18945.
[38] Yang, X. J.; Zhang, C.; Wu, L. Q. RSC Adv. 2015, 5, 25115.
[39] Jagadishbabu, N.; Shivashankar, K. RSC Adv. 2015, 5, 95240.
[40] Liang, T.; Xiao, J.; Xiong, Z. Y.; Li, X. W. J. Org. Chem. 2012, 77, 3583.
[41] Caballero, A. B.; Guillena, G. G.; Nájera, C. J. Org. Chem. 2013, 78, 5349.
[42] Wang, H. Y.; Li, L. L.; Lin, W.; Xu, P.; Huang, Z. B.; Shi, D. Q. Org. Lett. 2012, 14, 4598.
[43] Li, C. M.; Zhang, F. R. RSC Adv. 2016, 6, 75359.
[44] Hao, W. J.; Wang, J. Q.; Xu, X. P.; Zhang, S. L.; Wang, S. Y.; Ji, S. J. J. Org. Chem. 2013, 78, 12362.
[45] Rogness, D. C.; Larock, R. C. J. Org. Chem. 2010, 75, 2289.
[46] Han, X. D.; Zhao, Y. L.; Meng, J.; Ren, C. Q.; Liu, Q. J. Org. Chem. 2012, 77, 5173.
[47] Verma, A. K.; Reddy Kotla, S. K.; Aggarwal, T.; Kumar, S.; Nimesh, H.; Tiwari, R. K. J. Org. Chem. 2013, 78, 5372.
[48] Gimenez-Arnau, E.; Missailidis, S.; Stevens, M. F. G. An-ti-Cancer Drug Des. 1998, 13, 431.
[49] McCarthy, P. J.; Pitts, T. P.; Gunawardana, G. P.; Kelly-Borges, M.; Pomponi, S. A. J. Nat. Prod. 1992, 55, 1664.
[50] Sarkar, P.; Mukhopadhyay, C. Green Chem. 2015, 17, 3452.
[51] Khalil, I. M.; Barker, D.; Copp, B. R. J. Org. Chem. 2016, 81, 282.
[52] Marshall, K. M.; Barrows, L. R. Nat. Prod. Rep. 2004, 21, 731.
[53] Gu, Z. Y.; Liu, C. G.; Wang, S. Y.; Ji, S. J. Org. Lett. 2016, 18, 2379.
[54] Ma, Y. G.; Qiang, W. W.; Li, C.; Zhang, M. M.; Wang, X. S. Monatsh. Chem. 2016, 147, 1233.
[55] Tsvelikhovsky, D.; Buchwald, S. L. J. Am. Chem Soc. 2010, 132, 14048.
[56] Dubrovskiy, A. V.; Larock, R. C. J. Org. Chem. 2012, 77, 11232.
[57] Lian, Y. J.; Hummel, J. R.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 12548.
[58] Guo, H. M.; Mao, R. Z.; Wang, Q. T.; Niu, H. Y.; Xie, M. S.; Qu, G. R. Org. Lett. 2013, 15, 5460.
[59] Su, Q.; Li, P.; He, M. N.; Wu, Q. L.; Ye, L.; Mu, Y. Org. Lett. 2014, 16, 18.
[60] Zheng, Z. S.; Dian, L. Y.; Yuan, Y. C.; Negrerie, D. Z.; Du, Y. F.; Zhao, K. J. Org. Chem. 2014, 79, 7451.
[61] Pang, X. L.; Chen, C.; Su, X.; Li, M.; Wen, L. R. Org. Lett. 2014, 16, 6228.
[62] Wang, T. J.; Chen, W. W.; Li, Y. Xu, M. H. Org. Biomol. Chem. 2015, 13, 6580.
[63] Sarkar, R.; Mukhopadhyay, C. Org. Biomol. Chem. 2016, 14, 2706.
[64] Zhikharko, Y. D.; Kozlov, N. G.; Basalaeva, L. I. Zh. Org. Khim. 2016, 52, 383.
[65] Natrajan, A.; Wen, D. Green Chem. 2011, 13, 913.
[66] Hyodo, I.; Tobisu, M.; Chatani, N. Chem. Commun. 2012, 48, 308.
[67] Zhang, Z. G.; Gao, Y.; Liu, Y.; Li, J. J.; Xie, H. X.; Li, H.; Wang, W. Org. Lett. 2015, 17, 5492.
[68] Chate, A. V.; Rathod, U. B.; Kshirsagar, J. S.; Gaikwad, P. A.; Mane, K. D.; Mahajan, P. S.; Nikam, M. D.; Gill, C. H. Chin. J. Catal. 2016, 37, 146.
[69] Imerhasan, M.; Wang, T.; Helil, S.; Osman, K.; Muhammad, T. Chin. J. Org. Chem. 2010, 30, 1884(in Chinese). (穆赫塔尔·伊米尔艾山, 王婷, 萨提瓦力迪·海力力, 库尔班·吾斯曼, 吐尔洪·买买提, 有机化学, 2010, 30, 1884.)
[70] Sondhi, S. M.; Singh, J.; Rani, R.; Gupta, P. P.; Agrawal, S. K.; Saxena, A. K. Eur. J. Med. Chem. 2010, 45, 555.
[71] Patel, M. M.; Mali, M. D.; Patel, S. K. Bioorg. Med. Chem. Lett. 2010, 20, 6324.
[72] Graham, L. A.; Wilson, G. M.; West, T. K.; Day, C. S.; Kucera, G. L.; Bierbach, U. ACS Med. Chem. Lett. 2011, 2, 687.
[73] Kumar, P.; Kumar, R.; Prasad, D. N. P. Arabian J. Chem. 2013, 6, 79.
[74] Mahsud, L.; Imerhasan, M.; Mahmud, M. A.; Helil, S.; Liu, H. J. Chin. J. Org. Chem. 2014, 34, 1235(in Chinese). (力瓦依丁·买合苏提, 穆赫塔尔·伊米尔艾山, 麦麦提依明·马合木提, 萨特瓦尔迪·赫力力, 刘华君, 有机化学, 2014, 34, 1235.)
[75] Haydar, G.; Imerhasan, M.; Eshbakova, K. A.; Kurbanbaeva, A. E. J. Pharm. Biol. Sci. 2016, 4, 41.
[76] Tian, X. Y.; Yang, D.; Pan, Y. M.; Tong, B. H.; Su, G. F.; Wang, H. S. Chin. J. Org. Chem. 2011, 31, 346(in Chinese). (田小艳, 杨达, 潘英明, 童碧海, 苏桂发, 王恒山, 有机化学, 2011, 31, 346.)
[77] Percivalle, C.; Mahmood, T.; Ladame, S. Med. Chem. Commun. 2013, 4, 211.
[78] Centelles, V. M.; Burguete, M. I.; Galindo, F.; Izquierdo, M. A.; Kumar, D. K.; White, A. J. P.; Luis, S. V.; Vilar, R. J. Org. Chem. 2012, 77, 490.
[79] Jana, A.; Saha, B.; Karthik, S.; Barman, S.; Ikbal, M.; Ghosh, S. K.; Singh, N. D. P. Photochem. Photobiol. Sci. 2013, 12, 1041.
[80] Fusco, M. D.; Quintavalla, A.; Trombini, C.; Lombardo, M.; Roda, A.; Guardigli, M.; Mirasoli, M. J. Org. Chem. 2013, 78, 11238.
[81] Chen, D.; Zhang, X. Q.; Zhang, J. Y.; Wang, Y. Chem. J. Chin. Univ. 2015, 36, 484(in Chinese). (陈栋, 张学强, 张晶莹, 王悦, 高等学校化学学报, 2015, 36, 484.)
[82] Seo, J. A.; Jeon, S. K.; Gong, M. S.; Lee, J. Y.; Noh, C. H.; Kim, S. H. J. Mater. Chem. C 2015, 3, 4640.
[83] Zhao, Y.-P. M.S. Thesis, Fujian Medical University, Fuzhou, 2015(in Chinese). (赵燕苹, 硕士论文, 福建医科大学, 福州, 2015.)
/
〈 |
|
〉 |