研究简报

阳离子镱化合物催化合成2-氨基苯并噻嗪

  • 冯善娥 ,
  • 花露 ,
  • 姚志刚 ,
  • 徐凡
展开
  • 苏州大学材料与化学化工学部 苏州 215123

收稿日期: 2017-09-26

  修回日期: 2017-10-23

  网络出版日期: 2017-11-15

基金资助

国家自然科学基金(No.21272168)资助项目.

Syntheses of 2-Amino-3,1-benzothiazines Catalyzed by Cationic Ytterbium Complex

  • Feng Shan'e ,
  • Hua Lu ,
  • Yao Zhigang ,
  • Xu Fan
Expand
  • College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123

Received date: 2017-09-26

  Revised date: 2017-10-23

  Online published: 2017-11-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 21272168).

摘要

2-氨基苯并噻嗪及其官能化衍生物具有丰富生物活性,因此发展其高效合成方法受到了众多化学家的关注.以阳离子型镱化合物[Yb(CH3CN)9]3+[(AlCl43]3-·CH3CN可催化邻氨基肉桂酸乙酯与异硫氰酸酯的反应,在无溶剂条件下以高收率合成得到了一系列2-氨基苯并噻嗪化合物.该方法使用的催化剂用量低,反应条件温和,同时具有良好的化学选择性.

本文引用格式

冯善娥 , 花露 , 姚志刚 , 徐凡 . 阳离子镱化合物催化合成2-氨基苯并噻嗪[J]. 有机化学, 2017 , 37(12) : 3257 -3261 . DOI: 10.6023/cjoc201709043

Abstract

2-Amino-3,1-benzothiazine and its functionalized derivatives are known as useful compounds with a range of biological applications. A highly efficient reaction of o-aminocinnamate and isothiocyanates catalyzed by cationic ytterbium complex[Yb(CH3CN)9]3+[(AlCl4)3]3-·CH3CN under mild and solvent-free conditions was developed, which provides 2-amino-3,1-benzothiazines in high yields and chemoselectivity.

参考文献

[1] (a) Yamamoto, A. J. Organomet. Chem. 1995, 500, 337.
(b) Fischer, E. O.; Schubert, U. J. Organomet. Chem. 1975, 100, 59.
[2] (a) Hu, J.; Shen, Q. Chin. J. Catal. 1990, 11, 16(in Chinese). (扈晶余, 沈琪, 催化学报, 1990, 11, 16.)
(b) Tredget, C. S.; Bonnet, F.; Cowley, A. R.; Mountford, P. Chem. Commun. 2005, 3301.
(c) Arndt, S.; Spaniol, T. P.; Okuda, J. Angew. Chem., Int. Ed. 2003, 42, 5075.
(d) Luo, Y.; Baldamus, J.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 13910.
(e) Li, X. F.; Baldamus, J.; Hou, Z. Angew. Chem., Int. Ed. 2005, 44, 962.
(f) Fischbach, A.; Perdih, F.; Herdtweck, E.; Anwander, R. Organometallics 2006, 25, 1626.
[3] (a) Molander, G. A.; Rzasa, R. M. J. Org. Chem. 2000, 65, 1215.
(b) Tazelaar, C. G. J.; Bambirra, S.; van Leusen, D.; Meetsma, A.; Hessen, B.; Teuben, J. H. Organometallics 2004, 23, 936.
(c) Nishiura, M.; Hou, Z.; Wakatsuki, Y.; Yamaki, T.; Miyamoto, T. J. Am. Chem. Soc. 2003, 125, 1184.
(d) Lauterwasser, F.; Hayes, P. G.; Brase, S.; Piers, W. E.; Schafer, L. L. Organometallics 2004, 23, 2234.
(e) Bambirra, S.; Tsurugi, H.; Leusen, D.; Hessen, B. Dalton Trans. 2006, 1157.
(f) Guan, B.; Wang, B.; Hou, Z. Angew. Chem., Int. Ed. 2013, 52, 4418.
(g) Zhu, X.; Li, G.; Xu, F.; Zhang, Y.; Xue, M.; Shen, Q. Tetrahedron 2017, 73, 1451.
[4] (a) Hu, J.; Shen, Q.; Jin, Z. Chin. Sci. Bull. 1989, 1554(in Chinese). (扈晶余, 沈琪, 金钟声, 科学通报, 1989, 1554.)
(b) Shen, Q.; Hu, J.; Jin, Z.; Sun, Y. J. Chin. Rare Earths Soc. 1990, 8, 359(in Chinese). (沈琪, 扈晶余, 金钟声, 孙益民, 中国稀土学报, 1990, 8, 359.)
(c) Hu, J.; Shen, Q.; Jin, Z. Chin. Sci. Bull. 1990, 35, 1090.
[5] (a) Pelosi, S. S. US 4002622, 1975[Chem. Abstr. 1977, 86, 140076].
(b) Su, Y.; Guo, Q.; Wang, G.; Guo, S. CN 1683349, 2005[Chem. Abstr. 2006, 145, 124577].
(c) Rieu, J. P.; Patoiseau, J. F.; John, G. W.; Legrand, B.; Valentin, J. P. US 6011032, 2000[Chem. Abstr. 1997, 126, 225308]].
(d) Anzini, M.; Giordani, A.; Makovec, F.; Cappelli, A.; Vomero, S.; Caselli, G.; Rovati, L. C. WO 2009/040331, 2009[Chem. Abstr. 2009, 150, 374522].
(e) Mancini, A.; Chelini, A.; Di Capua, A.; Castelli, L.; Brogi, S.; Paolino, M.; Giuliani, G.; Cappelli, A.; Frosini, M.; Ricci, L. Eur. J. Med. Chem. 2017, 126, 614.
[6] (a) Prieto, J.; Vega, A.; Moragues, J. J. Heterocycl. Chem. 1976, 13, 813.
(b) Gauthier, J.; Duceppe, J. S. J. Heterocycl. Chem. 1984, 21, 1081.
(c) Hari, A.; Miller, B. L. Org. Lett. 2000, 2, 3667.
(d) Fedotov, A. N.; Trofimova, E. V.; Sidorov, V. A.; Potekhin, K. A.; Romanov, V. A.; Mochalov, S. S.; Zefirov, N. S. Dokl. Chem. 2005, 405, 217.
(e) Fedotov, A. N.; Trofimova, E. V.; Romanov, V. A.; Mochalov, S. S.; Shabarov, Y. S.; Zefirov, N. S. Chem. Heterocycl. Compd. 2008, 44, 96.
(f) Ding, Q.; Wu, J. J. Comb. Chem. 2008, 10, 541.
(g) Tang, R. Y.; Luo, P. S.; Zhang, X. G.; Zhong, P.; Li, J. H. Synlett 2010, 1345.
(h) Schmittel, M.; Mahajan, A.; Steffen, J. P. Synthesis 2004, 415.
(i) Sharma, K. K.; Ralhan, N. K.; Narang, K. S. J. Org. Chem. 1963, 28, 740.
(j) Hull, R.; van den Broek, P. J.; Swain, M. L. J. Chem. Soc., Perkin Trans. 11975, 922.
(k) Ding, Q.; Cao, B.; Zong, Z.; Peng, Y. J. Comb. Chem. 2010, 12, 370.
(l) Fukamachi, S.; Konishi, H.; Kobayashi, K. Synthesis 2010, 1593.
(m) Huang, J.; Yu, Y.; Hua, L.; Yao, Z.; Xu, F.; Shen, Q. Chin. Sci. Bull. 2013, 58, 717.
(n) Hua, L.; Yao, Z.; Xu, F.; Shen, Q. RSC Adv. 2014, 4, 3113.
(o) Kobayashi, K.; Yamane, K.; Nozawa, I.; Ezaki, K. Helv. Chim. Acta 2014, 97, 315.
(p) Saunthwal, R. K.; Patel, M.; Kumar, S.; Verma, A. K. Tetrahedron Lett. 2015, 56, 677.
(q) Xie, T.; Xiao, Y.; Zhao, S.; Hu, X.; Xu, P. J. Org. Chem. 2016, 81, 10499.
[7] Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.

文章导航

/