研究论文

(S)-联萘酚钛体系催化3-噻吩铝试剂对酮的不对称加成反应

  • 戈敏 ,
  • 张丽军 ,
  • 涂兵 ,
  • 周双六
展开
  • 功能分子固体教育部重点实验室 分子基材料安徽省重点实验室安徽师范大学化学与材料科学学院 芜湖 241000

收稿日期: 2017-10-07

  修回日期: 2017-11-09

  网络出版日期: 2017-11-17

基金资助

国家自然科学基金(Nos.21372009,21672004)资助项目.

Asymmetric Addition of 3-Thienyl Aluminum to Ketones Catalyzed by the Simple Titanium Catalytic System of (S)-1,1'-Binaphthol

  • Ge Min ,
  • Zhang Lijun ,
  • Tu Bing ,
  • Zhou Shuangliu
Expand
  • Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000

Received date: 2017-10-07

  Revised date: 2017-11-09

  Online published: 2017-11-17

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21372009, 21672004).

摘要

含噻吩基团的的手性芳香醇是自然界重要的活性物质,其基本结构单元广泛地存在于生物活性物质和医药中.报道了(S)-联萘酚和Ti(OiPr)4催化3-噻吩基铝试剂对酮的不对称加成反应,以较高的产率和优异的立体选择性(高达91%ee)得到相应的含有3-噻吩基乙醇.该催化体系具有广泛的适应性,能够适合含有吸电子和供电子基团的各种酮的不对称加成,得到相应的3-噻吩基乙醇.

本文引用格式

戈敏 , 张丽军 , 涂兵 , 周双六 . (S)-联萘酚钛体系催化3-噻吩铝试剂对酮的不对称加成反应[J]. 有机化学, 2018 , 38(3) : 672 -676 . DOI: 10.6023/cjoc201710004

Abstract

The optically active diaryl alcohols bearing thienyl group are well-known for their biological activity as well as key substructure in bioactive compounds and pharmaceuticals. The asymmetric addition of 3-thienyl aluminum to ketones afforded the optically active 3-thienyl arylethanols in good yields with high enantioselectivities of up to 91% ee employing the simple titanium catalytic system of (S)-1,1'-binaphthol. The catalytic system could also suit for various ketones bearing an electron-donating or electron-withdrawing groups to afford the corresponding diarylethanols containing substituted 3-thienyl groups.

参考文献

[1] For reviews, see:(a) Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757.
(b) Walsh, P. J. Acc. Chem. Res. 2003, 36, 739.
(c) Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2004, 43, 284.
(d) Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. Chem. Soc. Rev. 2006, 35, 454.
(e) Hatano, M.; Ishihara, K. Chem. Rec. 2008, 8, 143.
(f) Hatano, M.; Ishihara, K. Synthesis 2008, 1647.
(g) Paixão, M. W.; Braga, A. L.; Lüdtke, D. S. J. Braz. Chem. Soc. 2008, 19, 813.
[2] For asymmetric addition of arylboronic, see:(a) Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850.
(b) Özçubukçu, S.; Schmidt, F.; Bolm, C. Org. Lett. 2005, 7, 1407.
(c) Dahmen, S.; Lormann, M. Org. Lett. 2005, 7, 4597.
(d) Liu, X.; Wu, X.; Chai, Z.; Wu, Y.; Zhao, G.; Zhu, S. J. Org. Chem. 2005, 70, 7432.
(e) Wu, X.; Liu, X.; Zhao, G. Tetrahedron:Asymmetry 2005, 16, 2299.
(f) Braga, A. L.; Lüedtke, D. S.; Vargas, F.; Paixão, M. W. Chem. Commun. 2005, 2512.
(g) Lu, G.; Kwong, F. Y.; Ruan, J.-W.; Li, Y.-M.; Chan, A. S. C. Chem.-Eur. J. 2006, 12, 4115.
(h) Hatano, M.; Gouzu, R.; Mizuno, T.; Abe, H.; Yamada, T.; Ishihara, K. Catal. Sci. Technol. 2011, 1, 1149.
[3] For asymmetric addition of arylzinc, see:(a) Dosa, P. I.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1997, 62, 444.
(b) Bolm, C.; Muñiz, K. Chem. Commun. 1999, 1295-1296.
(c) Huang, W.-S.; Hu, Q.-S.; Pu, L. J. Org. Chem. 1999, 64, 7940.
(d) Huang, W.-S.; Pu, L. J. Org. Chem. 1999, 64, 4222.
(e) Bolm, C.; Kesselgruber, M.; Hermanns, N.; Hildebrand, J. P.; Raabe, G. Angew. Chem., Int. Ed. 2001, 40, 1488.
(f) Qin, Y.-C.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273.
(g) Shannon, J.; Bernier, D.; Daniel, D.; Woodward, S. Chem. Commun. 2007, 3945.
(h) Glynn, D.; Shannon, J.; Woodward, S. Chem.-Eur. J. 2010, 16, 1053.
[4] For asymmetric addition of arylaluminum, see:(a) Wu, K.-H.; Gau, H.-M. J. Am. Chem. Soc. 2006, 128, 14808.
(b) Wu, K.-H.; Chen, C.-A.; Gau, H.-M. Angew. Chem., Int. Ed. 2007, 46, 5373.
(c) Zhou, S.; Wu, K.-H.; Chen, C.-A.; Gau, H.-M. J. Org. Chem. 2009, 74, 3500.
(d) Zhou, S.; Chuang, D.-W.; Chang, S.-J.; Gau, H.-M. Tetrahedron:Asymmetry 2009, 20, 1407.
[5] For asymmetric addition of aryltitanium, see:(a) Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473.
(b) Wu, K.-H.; Zhou, S.; Chen, C.-A.; Yang, M.-C.; Chiang, R.-T.; Chen, C.-R.; Gau, H.-M. Chem. Commun. 2011, 47, 11668.
(c) Wu, K.-H.; Kuo, Y.-Y.; Chen, C.-A.; Huang, Y.-L.; Gau, H.-M. Adv. Synth. Catal. 2013, 355, 1001.
(d) Chang, S.-J.; Zhou, S.; Gau, H.-M.; RSC Adv. 2015, 5, 9368.
(e) Shu, C.-C.; Zhou, S.; Gau, H.-M. RSC Adv. 2015, 5, 98391.
[6] (a) Duchene-Marullaz, P.; Jovanovic, D.; Busch, N.; Vacher, J. Arch. Int. Pharmacodyn. Ther. 1963, 141, 465.
(b) Baumgold, J.; Cohen, V. I.; Paek, R.; Reba, R. C. Life Sci. 1991, 48, 2325.
[7] (a) Hatano, M.; Suzuki, S.; Ishihara, K. J. Am. Chem. Soc. 2006, 128, 9998.
(b) Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2007, 46, 5909.
(c) Hatano, M.; Miyamoto, T.; Ishihara, K. Org. Lett. 2007, 9, 4535.
(d) Salvi, L.; Kim, J. G.; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 12483.
(e) Li, K.; Hu, N.; Luo, R.; Yuan, W.; Tang, W. J. Org. Chem. 2013, 78, 6350.
[8] Wu, K.-H.; Chuang, D.-W.; Chen, C.-A.; Gau, H.-M. Chem. Commun. 2008, 2343.
[9] Zhou, S. L.; Chen, C.-R.; Gau, H.-M. Org. Lett. 2010, 12, 48.
[10] (a) Schmidt, F.; Rudolph, J.; Bolm, C. Adv. Synth. Catal. 2007, 349, 703.
(b) Liu, X.; Qiu, L.; Hong, L.; Yan, W.; Wang, R. Tetrahedron:Asymmetry 2009, 20, 616.
[11] Biradar, D. B.; Zhou, S.; Gau, H.-M. Org. Lett. 2009, 11, 3386.
[12] Salvi, L.; Kim, J. G.; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 12483.
[13] Uenishi, A.; Nakagawa, Y.; Osumi, H.; Harada, T. Chem.-Eur. J. 2013, 19, 4896.
[14] Zhang, L.; Tu, B.; Ge, M.; Li, Y.; Chen, L. Wang, W. Zhou, S. J. Org. Chem. 2015, 80, 8307.
[15] (a) Balsells, J.; Davis, T.; Carroll, P.; Walsh P. J. Am. Chem. Soc. 2002, 124, 10336.
(b) Wu, K.-H.; Gau, H.-M. Organometallics 2004, 23, 580.
(c) Harada, T.; Kanda, K. Org. Lett. 2006, 8, 3817.
(d) Li, Q.; Gau, H.-M. Chirality 2011, 23, 929.

文章导航

/