研究论文

铜(I)催化的非末端烯酰胺的三氟甲基化反应:N-(3,3,3-三氟-2-芳基-1-丙烯基)取代苯甲酰胺的合成

  • 王清 ,
  • 高克成 ,
  • 邹建平 ,
  • 曾润生
展开
  • 苏州大学材料与化学化工学部 苏州 215123

收稿日期: 2017-10-22

  修回日期: 2017-11-28

  网络出版日期: 2017-12-08

基金资助

江苏省产学研前瞻性联合研究(No.BY2015039-08)、国家自然科学基金(No.21472133)、江苏省高等学校优势学科基金资助项目.

Copper(I)-Catalyzed Non-terminal Enamides Trifluoromethylation: Flexible Synthesis of N-(3,3,3-Trifluoro-2-arylprop-1-en-1-yl) Substituted Benzamide

  • Wang Qing ,
  • Gao Kecheng ,
  • Zou Jianping ,
  • Zeng Runsheng
Expand
  • Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123

Received date: 2017-10-22

  Revised date: 2017-11-28

  Online published: 2017-12-08

Supported by

Project supported by the Prospective Study Program of Jiangsu Province (No. BY2015039-08), the National Natural Science Foundation of China (No. 21472133) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘要

以非末端烯酰胺N-芳基乙烯基取代苯甲酰胺和Togni试剂为原料,以二氯乙烷为溶剂,在碘化亚铜等铜盐催化和磷酸氢二钠存在下,90℃反应,简单有效的合成了N-(3,3,3-三氟-2-芳基-1-丙烯基)取代的苯甲酰胺.通过控制实验对反应机理进行了研究,结果表明反应先通过一价铜催化Togni试剂产生三氟甲基自由基,然后三氟甲基自由基选择性地加成到烯酰胺碳碳双键的β位上.

本文引用格式

王清 , 高克成 , 邹建平 , 曾润生 . 铜(I)催化的非末端烯酰胺的三氟甲基化反应:N-(3,3,3-三氟-2-芳基-1-丙烯基)取代苯甲酰胺的合成[J]. 有机化学, 2018 , 38(4) : 863 -870 . DOI: 10.6023/cjoc201710025

Abstract

A novel CuI-catalyzed trifluoromethylation of non-terminal enamides was investigated. N-Arylvinyl-substituted benzamide reacted with Togni reagent in dichloroethylane to afford N-(3,3,3-trifluoro-2-arylprop-1-en-1-yl) substituted benzamide. The reaction proceeded at 90℃ in air atmosphere in the presence of base and ligands. Control experiment shows that the Togni reagent firstly released CF3 radical in the presence of copper(I) salts and CF3 radical selectively added to the carbon-carbon double bond of β-position of enamides.

参考文献

[1] (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
(b) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
(c) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(d) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(f) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[2] (a) Rano, T. A.; Kuo, G.-H. Org. Lett. 2009, 11, 2812.
(b) Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.
(c) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2013, 52, 5575.
[3] (a) Sani, M.; Bruche, L.; Chiva, G.; Fustero, S.; Piera, J.; Volonterio, A.; Zanda, M. Angew. Chem., Int. Ed. 2003, 42, 2060.
(b) Ogu, K.; Matsumoto, S.; Akazome, M.; Ogura, K. Org. Lett. 2005, 7, 589.
(c) Jakowiecki, J.; Loska, R.; Makosza, M. J. Org. Chem. 2008, 73, 5436.
(d) Fustero, S.; Chiva, G.; Piera, J.; Sanz-Cervera, J. F.; Volonterio, A.; Zanda, M.; Ramirez de Arellano, C. J. Org. Chem. 2009, 74, 3122.
(e) Benhaim, C.; Bouchard, L.; Pelletier, G.; Sellstedt, J.; Kristofova, L.; Daigneault, S. Org. Lett. 2010, 12, 2008.
[4] (a) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
(b) Wang, S.-M.; Han, J.-B.; Zhang, C.-P.; Qin, H.-L.; Xiao, J.-C. Tetrahedron 2015, 71, 7949.
(c) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.
(d) Lefebvre, Q. Synlett 2016, 28, 19.
[5] For selected examples on transition-metal-catalyzed trifluoromethylation reactions, see:(a) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896.
(b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
(c) Liu, T.; Shao, X.; Wu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2012, 51, 540.
(d) Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.
(e) Zhang, B.; Muck-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792.
(f) Yang, F.; Klumphu, P.; Liang, Y.-M.; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.
(g) Zhu, Z.-Z.; Chen, K.; Yu, L.-Z.; Tang, X.-Y.; Shi, M. Org. Lett. 2015, 17, 5994.
(h) Yu, L.-Z.; Xu, Q.; Tang, X.-Y.; Shi, M. ACS Catal. 2016, 6, 526.
(i) Yu, L.-Z.; Wei, Y.; Shi, M. Chem. Commun. 2016, 52, 13163.
(j) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
[6] (a) Feng, C.; Loh, T.-P. Chem. Sci. 2012, 3, 3458.
(b) Yu, Y.-Y.; Ranade, A. R.; Georg, G. I. Adv. Synth. Catal. 2014, 356, 3510.
(c) Wang, H.; Cheng, Y.; Yu, S. Sci. China:Chem. 2016, 59, 195.
(d) Gou, B.-Q.; Yang, C.; Zhang, L.; Xia, W.-J. Acta Chim. Sinica 2017, 75, 66.
(e) Rey-Rodriguez, R.; Retailleau, P.; Bonnet, P.; Gillaizeau, I. Chem.-Eur. J. 2015, 21, 3572.
(f) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
(g) Jiang, H.-F.; Huang, W.; Yu, Y.; Yi, S.-J.; Li, J.-W; Wu, W.-Q. Chem. Commun. 2017, 53, 7473.
[7] (a) Cao, X.-H.; Pan X.-Q.; Zhou, P.-J.; Zou, J.-P.; Asekun, O. T. Chem. Commun. 2014, 50, 3359.
(b) Zhang, P.-Z.; Li, C.-K.; Zhang, G.-Y.; Zhang, L.; Jiang, Y.-J.; Zou, J.-P. Tetrahedron 2016, 72, 3250.
[8] Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526.

文章导航

/