铜(I)催化的非末端烯酰胺的三氟甲基化反应:N-(3,3,3-三氟-2-芳基-1-丙烯基)取代苯甲酰胺的合成
收稿日期: 2017-10-22
修回日期: 2017-11-28
网络出版日期: 2017-12-08
基金资助
江苏省产学研前瞻性联合研究(No.BY2015039-08)、国家自然科学基金(No.21472133)、江苏省高等学校优势学科基金资助项目.
Copper(I)-Catalyzed Non-terminal Enamides Trifluoromethylation: Flexible Synthesis of N-(3,3,3-Trifluoro-2-arylprop-1-en-1-yl) Substituted Benzamide
Received date: 2017-10-22
Revised date: 2017-11-28
Online published: 2017-12-08
Supported by
Project supported by the Prospective Study Program of Jiangsu Province (No. BY2015039-08), the National Natural Science Foundation of China (No. 21472133) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
王清 , 高克成 , 邹建平 , 曾润生 . 铜(I)催化的非末端烯酰胺的三氟甲基化反应:N-(3,3,3-三氟-2-芳基-1-丙烯基)取代苯甲酰胺的合成[J]. 有机化学, 2018 , 38(4) : 863 -870 . DOI: 10.6023/cjoc201710025
A novel CuI-catalyzed trifluoromethylation of non-terminal enamides was investigated. N-Arylvinyl-substituted benzamide reacted with Togni reagent in dichloroethylane to afford N-(3,3,3-trifluoro-2-arylprop-1-en-1-yl) substituted benzamide. The reaction proceeded at 90℃ in air atmosphere in the presence of base and ligands. Control experiment shows that the Togni reagent firstly released CF3 radical in the presence of copper(I) salts and CF3 radical selectively added to the carbon-carbon double bond of β-position of enamides.
Key words: trifluoromethylation; Togni reagent; catalyst; enamide
[1] (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
(b) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214.
(c) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(d) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(f) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[2] (a) Rano, T. A.; Kuo, G.-H. Org. Lett. 2009, 11, 2812.
(b) Kawai, H.; Okusu, S.; Tokunaga, E.; Sato, H.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2012, 51, 4959.
(c) Kawai, H.; Yuan, Z.; Kitayama, T.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2013, 52, 5575.
[3] (a) Sani, M.; Bruche, L.; Chiva, G.; Fustero, S.; Piera, J.; Volonterio, A.; Zanda, M. Angew. Chem., Int. Ed. 2003, 42, 2060.
(b) Ogu, K.; Matsumoto, S.; Akazome, M.; Ogura, K. Org. Lett. 2005, 7, 589.
(c) Jakowiecki, J.; Loska, R.; Makosza, M. J. Org. Chem. 2008, 73, 5436.
(d) Fustero, S.; Chiva, G.; Piera, J.; Sanz-Cervera, J. F.; Volonterio, A.; Zanda, M.; Ramirez de Arellano, C. J. Org. Chem. 2009, 74, 3122.
(e) Benhaim, C.; Bouchard, L.; Pelletier, G.; Sellstedt, J.; Kristofova, L.; Daigneault, S. Org. Lett. 2010, 12, 2008.
[4] (a) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.
(b) Wang, S.-M.; Han, J.-B.; Zhang, C.-P.; Qin, H.-L.; Xiao, J.-C. Tetrahedron 2015, 71, 7949.
(c) Pan, X.; Xia, H.; Wu, J. Org. Chem. Front. 2016, 3, 1163.
(d) Lefebvre, Q. Synlett 2016, 28, 19.
[5] For selected examples on transition-metal-catalyzed trifluoromethylation reactions, see:(a) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Angew. Chem., Int. Ed. 2011, 50, 1896.
(b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
(c) Liu, T.; Shao, X.; Wu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2012, 51, 540.
(d) Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.
(e) Zhang, B.; Muck-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792.
(f) Yang, F.; Klumphu, P.; Liang, Y.-M.; Lipshutz, B. H. Chem. Commun. 2014, 50, 936.
(g) Zhu, Z.-Z.; Chen, K.; Yu, L.-Z.; Tang, X.-Y.; Shi, M. Org. Lett. 2015, 17, 5994.
(h) Yu, L.-Z.; Xu, Q.; Tang, X.-Y.; Shi, M. ACS Catal. 2016, 6, 526.
(i) Yu, L.-Z.; Wei, Y.; Shi, M. Chem. Commun. 2016, 52, 13163.
(j) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
[6] (a) Feng, C.; Loh, T.-P. Chem. Sci. 2012, 3, 3458.
(b) Yu, Y.-Y.; Ranade, A. R.; Georg, G. I. Adv. Synth. Catal. 2014, 356, 3510.
(c) Wang, H.; Cheng, Y.; Yu, S. Sci. China:Chem. 2016, 59, 195.
(d) Gou, B.-Q.; Yang, C.; Zhang, L.; Xia, W.-J. Acta Chim. Sinica 2017, 75, 66.
(e) Rey-Rodriguez, R.; Retailleau, P.; Bonnet, P.; Gillaizeau, I. Chem.-Eur. J. 2015, 21, 3572.
(f) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
(g) Jiang, H.-F.; Huang, W.; Yu, Y.; Yi, S.-J.; Li, J.-W; Wu, W.-Q. Chem. Commun. 2017, 53, 7473.
[7] (a) Cao, X.-H.; Pan X.-Q.; Zhou, P.-J.; Zou, J.-P.; Asekun, O. T. Chem. Commun. 2014, 50, 3359.
(b) Zhang, P.-Z.; Li, C.-K.; Zhang, G.-Y.; Zhang, L.; Jiang, Y.-J.; Zou, J.-P. Tetrahedron 2016, 72, 3250.
[8] Cheung, C. W.; Buchwald, S. L. J. Org. Chem. 2012, 77, 7526.
/
〈 |
|
〉 |