综述与进展

线性二芳基碘盐在杂原子芳基化中的应用研究进展

  • 马姣丽 ,
  • 陈立成 ,
  • 袁中文 ,
  • 程辉成
展开
  • 广东石油化工学院化学工程学院 茂名 525000

收稿日期: 2018-02-22

  修回日期: 2018-04-02

  网络出版日期: 2018-04-13

基金资助

茂名市科技计划项目(No.917313)、广东石油化工学院人才引进(No.517152)、广东石油化工学院青年创新人才培育(No.517136)、广东大学生攀登计划(No.pdjh2017b0343)及广东石油化工学院大学生创新创业培育计划(No.2017pyA006)资助项目.

Recent Advance of Acyclic Diaryliodonium Salts in Arylation of Heteroatom

  • Ma Jiaoli ,
  • Chen Licheng ,
  • Yuan Zhongwen ,
  • Cheng Huicheng
Expand
  • College of Chemcal Engineering, Guangdong University of Petrochemical Technology, Maoming 525000

Received date: 2018-02-22

  Revised date: 2018-04-02

  Online published: 2018-04-13

Supported by

Project supported by the Maoming City Technology Bureau (No. 917313), the Guangdong University of Petrochemical Technology (Nos. 517152, 517136, 2017pyA006).

摘要

有机高价碘盐化合物作为一种低毒性、对环境友好、高反应活性的试剂,受到了广泛的关注.线性二芳基碘盐是一类重要的高价碘试剂,常在有机合成中作为芳基阳离子试剂进行芳基化反应,在有机合成领域具有广泛的应用.在温和的条件下,线性二芳基碘盐与亲核试剂反应成为高效构建杂原子芳基化的有效手段之一.按照成键类型分类讨论线性二芳基碘盐在杂原子(包括氧、氮、硫、磷等)芳基化反应中的应用,并就该领域的的发展前景进行展望.

本文引用格式

马姣丽 , 陈立成 , 袁中文 , 程辉成 . 线性二芳基碘盐在杂原子芳基化中的应用研究进展[J]. 有机化学, 2018 , 38(7) : 1586 -1595 . DOI: 10.6023/cjoc201802021

Abstract

As a kind of low toxicity, environmentally friendly, high reaction activity reagent, hypervalent iodine compounds have received the widespread attention. Acyclic diaryl iodonium salt as aryl cationic reagent, has an important application in organic synthesis. Under mild conditions, diaryl iodonium salt can react with nucleophilic reagent, which has been one of the effective means of the arylation of heteroatom. According to the classification of chemical bond formation, the application of the acyclic diaryl iodonium salt in the arylation of heteroatom (including oxygen, nitrogen, sulfur, phosphorus, etc.) is discussed and the development direction in the field is prospected.

参考文献

[1] (a) Zhdankin, V. V. Hypervalent Iodine Chemistry:Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 2013.
(b) Wirth, T. Hypervalent Iodine Chemistry, Springer, Berlin, 2003.
(c) Varvoglis, A. Hypervalent Iodine in Organic Syntheses, Academic Press, San Diego, 1996.
(d) Zhdankin, V. V. ARKIVOC 2009, (i), 1.
(e) Wirth, T. Angew. Chem. Int. Ed. 2005, 117, 3722.
(f) Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402.
(g) Zhang, X.; Cong, Y.; Lin, G.-Y.; Guo, X.-L.; Cao, Y.; Lei, K.-H.; Du, Y.-F. J. Org. Chem. 2016, 36, 2513 (in Chinese).
(张翔, 丛颖, 林光宇, 郭旭亮, 曹阳, 雷坤华, 杜云飞, 有机化学, 2016, 36, 2513.)
(h) Duan, Y.-N.; Jiang, S.; Han, Y.-C.; Sun, B.; Zhang, C. J. Org. Chem. 2016, 36, 973 (in Chinese).
(段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)
[2] (a) Koser, G. F.; Wettach, R. H.; Smith, C. S. J. Org. Chem. 1980, 45, 1543.
(b) Stang, P. J.; Zhdankin, V. V.; Tykwinski, R. Tetrahedron Lett. 1992, 33, 1419.
(c) Merritt, E. A.; Olofsson, B. Angew. Chem. Int. Ed. 2009, 48, 9052.
(d) Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 25, 2521.
(e) Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
(f) Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 2521.
(g) Zhu, M.; Jalalian, N.; Olofsson, B. Synlett 2008, 592.
(h) Yusubov, M. S.; Maskaev, A. V.; Zhdankin, V. V. ARKIVOC 2011, (i), 370.
(i) Xiao, Z.-C.; Xia, C.-F. Chin. J. Org. Chem. 2013, 33, 2119 (in Chinese).
(肖志超, 夏成峰, 有机化学, 2013, 33, 2119.)
(j) Zhang, B.-X.; Zhao, X.-Y.; Wu, Q.; Guo, Y.-L. Prog. Chem. 2013, 25, 1142 (in Chinese).
(张变香, 赵晓芸, 吴群, 郭一力, 化学进展, 2013, 25, 1142.)
(k) Olofsson, B. Top. Curr. Chem. 2015, 373, 135.
(l) Aradi, K.; Tóth, B. L.; Tolnai, G. L.; Novák, Z. Synlett 2016, 27, 1456.
[3] Hartmann, C.; Meyer, V. Ber. Dtsch. Chem. Ges. 1894, 27, 426.
[4] (a) Koser, G. F.; Wettach, R. H.; Smith, C. S. J. Org. Chem. 1980, 45, 1543.
(b) Carman C. S.; Koser G. F. J. Org. Chem. 1983, 48, 2534.
(c) Margida A. J.; Koser G. F. J. Org. Chem. 1984, 49, 3643.
(d) Kitamura T.; Matsuyuki J.; Taniguchi H. Synthesis 1994, 147.
(e) Mascarelli, L.; Benati. G. Gazz. Chim Ital. 1908, 38, 627.
(f) Merritt, E. A.; Malmgren, J.; Klinke, F. J.; Olofsson, B. Synlett 2009, 2277.
(g) Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602.
(h) Lindstedt, E.; Reitti, M.; Olofsson, B. J. Org. Chem. 2017, 82, 11909.
(i) Grushin, V. V. Chem. Soc. Rev. 2000, 29, 315.
(j) Chatterjee, N.; Goswami, A. Eur. J. Org. Chem. 2017, 3023.
[5] (a) Stang P. J.; Zhdankin V. V. Chem. Rev. 1996, 96, 1123.
(b) Olofsson B.; Merritt. E. A. Angew. Chem., Int. Ed. 2009, 48, 9052.
[6] (a) Der Puy, M. V. J. Fluorine Chem. 1982, 21, 385.
(b) Pike, V. W.; Aigbirhio, F. I. J. Chem. Soc., Chem. Commun. 1995, 2215.
(c)Shah, A.; W. Pike, V.; A. Widdowson, D. J. Chem. Soc., Perkin Trans. 1 1998, (13), 2043.
(d) Graskemper, J. W.; Wang, B.; Qin, L.; Neumann, K. D.; DiMagno, S. G. Org. Lett. 2011, 13, 3158.
[7] (a) Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. Org. Lett. 2013, 15, 5134.
(b)Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. Organometallics 2014, 33, 5525.
(c) Ichiishi, N.; Brooks, A. F.; Topczewski, J. J.; Rodnick, M. E.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2014, 16, 3224.
[8] Moon, B. S.; Kil, H. S.; Park, J. H.; Kim, J. S.; Park, J.; Chi, D. Y.; Lee, B. C.; Kim, S. E. Org. Biomol. Chem. 2011, 9, 8346.
[9] Chun, J.-H.; Pike, V. W. Org. Biomol. Chem. 2013, 11, 6300.
[10] (a) Rotstein, B. H.; Stephenson, N. A.; Vasdev, N.; Liang, S. H. Nat. Commun. 2014, 5, 4365.
(b) Calderwood, S.; Collier, T. L.; Gouverneur, V.; Liang, S. H.; Vasdev, N. J. Fluorine Chem. 2015, 178, 249.
[11] Carrol, M. A.; Wood, R. A. Tetrahedron 2007, 63, 11349.
[12] Sandtorv, A. H.; Stuart, D. R. Angew. Chem., Int. Ed. 2016, 55, 15812.
[13] Yang, Y.; Wu, X.; Han, J.; Mao, S.; Qian, X.; Wang, L. Eur. J. Org. Chem. 2014, 6854.
[14] Riedmüller, S.; Nachtsheim, B. J. Synlett 2015, 26, 651.
[15] Pang, X.; Lou, Z.; Li, M.; Wen, L.; Chen, C. Eur. J. Org. Chem. 2015, 3361.
[16] Geng, X.; Mao, S.; Chen, L.; Yu, J.; Han, J.; Hua, J.; Wang, L. Tetrahedron Lett. 2014, 55, 3856.
[17] Tinnis, F.; Stridfeldt, E.; Lundberg, H.; Adolfsson, H.; Olofsson, B. Org. Lett. 2015, 17, 2688.
[18] Lucchetti, N.; Scalone, M.; Fantasia, S.; Muiz, K. Angew. Chem., Int. Ed. 2016, 55, 13335.
[19] Yang, Q.; He, X.-X.; Chang, J.; Wu, Q.; Zhang, B.-X. Chin. J. Org. Chem. 2011, 31, 1687 (in Chinese).
(杨祺, 和潇夏, 常姣, 吴群, 张变香. 有机化学, 2011, 31, 1687.)
[20] Guo, F.; Wang, L.; Wang, P.; Yu, J.; Han, J. Asian J. Org. Chem. 2012, 1, 218.
[21] Gonda, Zs.; Novák, Z. Chem. Eur. J. 2015, 21, 16801.
[22] Modha, S. G.; Greaney, M. F. J. Am. Chem. Soc. 2015, 137, 1416.
[23] Reitti, M.; Villo, P.; Olofsson, B. Angew. Chem. Int. Ed. 2016, 55, 8928.
[24] Li, X.; Li, L.; Mo, X.; Mo, D. Synth. Commun. 2016, 46, 963.
[25] Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.
[26] Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou, Z.; Li, M. Chem. Commun. 2013, 49, 6752.
[27] (a) Cahard, E.; Bremeyer, N.; Gaunt, M. J. Angew. Chem., Int. Ed. 2013, 52, 9284.
(b) Sinai, Á.; Mészáros, Á.; Gáti, T.; Kudar, V.; Pallò, A.; Novák, Z. Org. Lett. 2013, 15, 5654.
(c) Wang, Y.; Chen, C.; Peng, J.; Li, M. Angew. Chem., Int. Ed. 2013, 52, 5323.
(d) Zhang, F.; Das, S.; Walkinshaw, A. J.; Casitas, A.; Taylor, M.; Suero, M. G.; Gaunt, M. J. J. Am. Chem. Soc. 2014, 136, 8851.
[28] (a) Aradi, K.; Bombicz, P.; Novák, Z. J. Org. Chem. 2016, 81, 920.
(b) Wen, R.-L.; Dou, Q.; Wang, Y.-C.; Zhang, J.-W.; Guo, W.-S.; Li, M. J. Org. Chem. 2017, 82, 1428.
(c) Wen, R.-L.; Shen, Q.-Y.; Guo, W.-S.; Li, M. Org. Chem. Front. 2016, 3, 870.
(d) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Org. Lett. 2017, 19, 2694.
[29] (a) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Org. Lett. 2017, 19, 2694.
(b) Oh, K. H.; Kim, J. G.; Park, J. K. Org. Lett. 2017, 19, 3994.
[30] Li, P.; Cheng, G.; Zhang, H.; Xu, X.; Gao, J.; Cui, X. J. Org. Chem. 2014, 79, 8156.
[31] Xiang, S.-K.; Li, J.-M.; Huang, H.; Feng, C.; Ni, H.-L.; Chen, X.-Z.; Wang, B.-Q.; Zhao, K.-Q.; Hu, P.; Redshaw, C. Adv. Synth. Catal. 2015, 357, 3435.
[32] (a) Beringer, F. M.; Gindler, E. M. J. Am. Chem. Soc. 1955, 77, 3203.
(b) Caserio, M. C.; Glusker, D. L.; Roberts, J. D. J. Am. Chem. Soc. 1959, 81, 336.
[33] (a) Jalalian, N.; Ishikawa, E. E.; Silva, L. F. Jr.; Olofson, B. Org. Lett. 2011, 13, 1552.
(b) Jalalian, N.; Petersen, T. B.; Olofsson, B. Chem. Eur. J. 2012, 18, 14140.
(c) Lindstedt, E.; Ghosh, R.; Olofsson, B. Org. Lett. 2013, 15, 6070.
(d) Chan, L.; McNally, A.; Toh, Q. Y.; Mendoza, A.; Gaunt, M. J. Chem. Sci. 2015, 6, 1277.
[34] Thorat, P. B.; Waghmode, N. A.; Karade, N. N. Tetrahedron Lett. 2014, 55, 5718.
[35] (a) Lubinovski, J. J.; Knapczyk, J. W.; Calderon, J. L.; Petit, L. R.; McEwen, W. E. J. Org. Chem. 1975, 40, 3010.
(b) Ghosh, R.; Lindstedt, E.; Jalalian, N.; Olofsson, B. ChemistryOpen 2014, 3, 54.
[36] Sundalam, S. K.; Stuart, D. R. J. Org. Chem. 2015, 80, 6456.
[37] Tolnai, G. L.; Nilsson, U. J.; Olofsson, B. Angew. Chem., Int. Ed. 2016, 55, 11226.
[38] Kumar, D.; Arun, V.; Pilania, M.; Shekar, K. P. C. Synlett 2013, 24, 831.
[39] Xiong, B.; Feng, X.; Zhu, L.; Chen, T.; Zhou, Y.; Au, C.-T.; Yin, S.-F. ACS Catal. 2015, 5, 537.
[40] Bhattarai, B.; Tay, J.-H.; Nagorny, P. Chem. Commun. 2015, 51, 5398.
[41] Sandin, R. B.; Christiansen, R. G.; Brown, R. K.; Kirkwood, S. J. Am. Chem. Soc. 1947, 69, 1550.
[42] Huang, X.; Zhu, Q.; Xu, Y. Synth. Commun. 2001, 31, 2823.
[43] Krief, A.; Dumont, W.; Robert, M. Synlett 2006, 484.
[44] Wagner, A. M.; Sanford, M. S. J. Org. Chem. 2014, 79, 2263.
[45] Cullen, S. C.; Shekhar, S.; Nere, N. K. J. Org. Chem. 2013, 78, 12194.
[46] Saravanan, P.; Anbarasan, P. Adv. Synth. Catal. 2015, 357, 3521.
[47] Nikolaienko, P.; Yildiz, T.; Rueping, M. Eur. J. Org. Chem. 2016, 1091.
[48] Xu, J.; Zhang, P. B.; Gao, Y.; Chen, Y.; Tang, G.; Zhao, Y. J. Org. Chem. 2013, 78, 8176.
[49] Miralles, N.; Romero, R. M.; Fernandez, E.; Muniz, K. Chem. Commun. 2015, 51, 14068.

文章导航

/