研究简报

碳正离子介导的二氢喹啉的氧化碳氢炔基化

  • 刘子强 ,
  • 赵冉 ,
  • 贺妮 ,
  • 李伟
展开
  • 山东中医药大学药学院 济南 250355

收稿日期: 2018-03-01

  修回日期: 2018-03-16

  网络出版日期: 2018-04-13

Trityl Ion-Mediated Oxidative C—H Alkynylation of 1, 2-Dihydroquinolines

  • Liu Ziqiang ,
  • Zhao Ran ,
  • He Ni ,
  • Li Wei
Expand
  • Department of Pharmaceutical, Shandong University of Traditional Chinese Medicine, Jinan 250355

Received date: 2018-03-01

  Revised date: 2018-03-16

  Online published: 2018-04-13

摘要

报道了一个在无金属参与的温和条件下,二氯甲烷(DCM)为溶剂,高氯酸三苯基碳正离子(Ph3CClO4)介导N-酰基二氢喹啉与类型多样的有机硼试剂的氧化C—H炔基化反应,高效合成了α-炔基取代的1,2-二氢喹啉化合物.此外,相应的C—H烯基化也可兼容,展示出了较好的合成利用价值.

本文引用格式

刘子强 , 赵冉 , 贺妮 , 李伟 . 碳正离子介导的二氢喹啉的氧化碳氢炔基化[J]. 有机化学, 2018 , 38(5) : 1261 -1266 . DOI: 10.6023/cjoc201803001

Abstract

An efficient synthesis of α-substituted 1, 2-dihydroquinoline compounds through the oxidative C—H functionalization of N-acyl-dihydroquinoline with diverse organoboron reagents mediated by triphenylcarbium perchlorate (Ph3CClO4) is reported. The reaction exhibits good functional group tolerance, allowing for C—H alkynylation and alkenylation proceeding smoothly in good yields.

参考文献

[1] (a) Michael, J. P. Nat. Prod. Rep. 2007, 24, 223.
(b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166.
(c) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
[2] (a) Kouznetsov, V.; Palma, A.; Ewert, C.; Varlamov, A. J. Heterocycl. Chem. 1998, 35, 761.
(b) Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157.
(c) Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031.
[3] (a) Takamura, M.; Funabashi, K.; Kanai, M.; M. Shibasaki, J. Am. Chem. Soc. 2001, 123, 6801.
(b) Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007, 129, 6686.
[4] (a) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011, 2, 980.
(b) Kodama, T.; Moquist, P. N.; Schaus, S. E. Org. Lett. 2011, 13, 6316.
(c) Sun, S.; Mao, Y.; Lou, H.; Liu, L. Chem. Commun. 2015, 51, 10691.
(d) Volla, C. M. R.; Fava, E.; Atodiresei, L.; Rueping, M. Chem. Commun. 2015, 51, 15788.
(e) Berti, F.; Malossi, F.; Marchettib, F.; Pineschi, M. Chem. Commun. 2015, 51, 13694.
[5] (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
(b) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
[6] (a) Murahashi, S.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490.
(b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780.
(c) Li, C. J. Acc. Chem. Res. 2009, 42, 335.
(d) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293.
(e) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
(f) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(g) Liu, Z.; Chen, L.; Li, J.; Liu, K.; Zhao, J.; Xu, M.; Feng, L.; Wan, R.; Li, W.; Liu, L. Org. Biomol. Chem, 2017, 15, 7600.
(h) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(i) Liu, X.; Sun, S.; Meng, Z.; Lou, H.; Liu, L. Org. Lett. 2015, 17, 2396.
(j) Xie, Z.; Zan, X.; Sun, S.; Pan, X.; Liu, L. Org. Lett. 2016, 18, 3944.
(k)Wang, G., Mao, Y., Liu, L. Org. Lett. 2016, 18, 6476.
(l) Zhang, Q.; Lv, J.; Luo, S. Acta Chim. Sinica 2016, 74, 61(in Chinese). (张启超, 吕健, 罗三中, 化学学报, 2016, 74, 61.)
(m) Qin, Y.; Zhu, L.; Luo, S. Chem. Rev. 2017, 117, 9433.
[7] (a) Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312.
(b) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am. Chem. Soc. 2008, 130, 11005.
(c) Boess, E.; Sureshkumar, D.; Sud, A.; Wirtz, C.; Farès, C.; Klussmann, M. J. Am. Chem. Soc. 2011, 133, 8106.
(d) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012, 134, 5317.
(e) Li, Z.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810.
(f) Li, Z.; Yu, R.; Li, H. Angew. Chem., Int. Ed. 2008, 47, 7497.
(g) Yang, F.; Li, J.; Xie, J.; Huang, Z. Z. Org. Lett. 2010, 12, 5214.
(h) Muramatsu, W.; Nakano, K.; Li, C. J. Org. Lett. 2013, 15, 3650.
(i) Li, Z.; Li, C.-J. Org. Lett. 2004, 6, 4997.
(j) Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 10429.
[8] (a) Guo, C.; Song, J.; Luo, S.-W.; Gong, L.-Z. Angew. Chem., Int. Ed. 2010, 49, 5558.
(b) Li, Z.; MacLeod, P. D.; Li, C.-J. Tetrahedron:Asymmetry 2006, 17, 590.
(c) Yang, Q.; Zhang, L.; Ye, C.; Luo, S.; Wu, L.-Z. Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.
(d) Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044.
(e) Zhang, G.; Ma, Y.; Wang, S.; Zhang, Y.; Wang, R. J. Am. Chem. Soc. 2012, 134, 12334.
(f) Zhang, G.; Ma, Y.; Wang, S.; Kong, W.; Wang, R. Chem. Sci. 2013, 4, 2645.
(g) Bergonzini, G.; Schindler, C. S.; Wallentin, C.-J.; Jacobsen, E. N.; Stephenson, C. R. J. Chem. Sci. 2014, 5, 112.
[9] (a) Pintér, Á.; Sud, A.; Sureshkumar, D.; Klussmann, M. Angew. Chem., Int. Ed. 2010, 49, 5004.
(b) Liu, X.; Meng, Z.; Li, C.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 6012.
(c) Richter, H.; Fröhlich, R.; Daniliuc, C.-G.; García Mancheño, O. Angew. Chem., Int. Ed. 2012, 51, 8656.
(d) Richter, H.; García Mancheño, O. Eur. J. Org. Chem. 2010, 4460.
(e) Ghobrial, M.; Harhammer, K.; Mihovilovic, M. D.; Schnürch, M. Chem. Commun. 2010, 46, 8836.
(f) Ghobrial, M.; Schnürch, M.; Mihovilovic, M. D. J. Org. Chem. 2011, 76, 8781.
(g) Liu, X.; Sun, B.; Xie, Z.; Qin, X.; Liu, L.; Lou, H. J. Org. Chem. 2013, 78, 3104.
(h) Sun, S.; Li, C.; Floreancig, P. E.; Lou, H.; Liu, L. Org. Lett. 2015, 17, 1684.
(i) Long, H.; Wang, G.; Lu, R.; Xu, M.; Zhang, K.; Qi, S.; He, Y.; Bu, Y.; Liu, L. Org. Lett. 2017, 19, 2146.
[10] (a) Xie, Z.; Liu, L.; Chen, W.; Zheng, H.; Xu, Q.; Yuan, H.; Lou, H. Angew. Chem., Int. Ed. 2014, 53, 3904.
(b) Chen, W.; Xie, Z.; Zheng, H.; Lou, H.; Liu, L. Org. Lett. 2014, 16, 5988.
(c) Wan, M.; Meng, Z.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 13845.
[11] (a) Kim, H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 398.
(b) Vo, C.-V. T.; Mitchell, T. A.; Bode, J. W. J. Am. Chem. Soc. 2011, 133, 14082.
(c) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Del Bel, M.; Baran, P. S. J. Am. Chem. Soc. 2011, 133, 3292.
(d) Nielsen, D. K.; Doyle, A. G. Angew. Chem., Int. Ed. 2011, 50, 6056.

文章导航

/