三氟甲磺酸催化的2,3'-二吲哚衍生物的合成
收稿日期: 2018-03-23
修回日期: 2018-05-03
网络出版日期: 2018-05-14
基金资助
国家自然科学基金(No.21672048)、浙江省自然科学基金(No.LY18B020015)资助项目.
Synthesis of 2,3'-Bisindole Derivatives Catalyzed by TfOH
Received date: 2018-03-23
Revised date: 2018-05-03
Online published: 2018-05-14
Supported by
Project supported by the National Natural Science Foundation of China (No. 21672048), the Natural Science Foundation of Zhejiang Province (No. LY18B020015).
报道了一种三氟甲磺酸催化下3-取代吲哚与(1H-2-吲哚基)二芳基甲醇的加成反应合成具有潜在生物活性2,3'-二吲哚衍生物的新方法.在最优化的反应条件下,以中等到高的产率得到了目标产物,且反应具有条件温和、操作简单、底物适用范围广等优点.同时,2-呋喃基二苯基甲醇也能够适用于反应当中,以较好的产率生成2-呋喃取代的吲哚衍生物.
关键词: 加成反应; 合成方法; 2,3'-二吲哚衍生物; 2-吲哚基二芳基甲醇; 三氟甲磺酸
章吕烨, 吴彬强, 陈张涛, 胡锦锦, 曾晓飞, 钟国富 . 三氟甲磺酸催化的2,3'-二吲哚衍生物的合成[J]. 有机化学, 2018 , 38(8) : 2028 -2035 . DOI: 10.6023/cjoc201803036
A highly efficient TfOH-catalyzed addition of C3-substituted indole derivatives with (1H-indol-2-yl)diphenyl-methanols has been established, leading to the synthesis of a series of potentially bioactive 2,3'-bisindols in moderate to high yields (48%~89%) and with broad substrate scope under mild conditions. In addition, the furan-2-yldiphenylmethanol could also be applied in the reaction and afforded 2-(5-benzhydrylfuran-2-yl)-1H-indole in good yield.
[1] (a) Humphrey, G.-R.; Kuethe, J.-T. Chem. Rev. 2006, 106, 2875.
(b) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.
(c) Kochanowska-Karamyan, A.-J.; Hamann, M.-T. Chem. Rev. 2010, 110, 4489.
[2] (a) Xiao, Z. J.; Hao, Y. S.; Liu, B. C.; and Qian, L. S. Leuk. Lymphoma 2002, 43, 1763.
(b) Kritsanida, M.; Magiatis, P.; Skaltsounis, A. L.; Peng, Y. Y.; Li, P.; Wennogle, L. P. J. Nat. Prod. 2009, 72, 2199.
[3] Rottmann, M.; McNamara, C.; Yeung, B. K. S.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; Gonzalez-Paez, G. E.; Lakshminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H. P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A., Diagana, T. T. Science. 2010, 329, 1175.
[4] Huang, P. P.; Peng, X. J.; Hu, D.; Liao, H. W.; Tang, S. B.; Liu, L. X. Org. Biomol. Chem. 2017, 15, 9622.
[5] Guo, T.; Han, S.-L.; Liu, Y.-C.; Liu, Y.; Liu, H. M. Tetrahedron Lett. 2016, 57, 1097.
[6] Ansari, N. N.; Dacko, C. A.; Akhmedov, N. G.; Söderberg, B. C. G. J. Org. Chem. 2016, 81, 9337.
[7] Seetham, N.; Sinki, K.; Meenakshi, S.; Pulak, J. B. J. Org. Chem. 2015, 80, 6381.
[8] (a) Qi, S.; Liu, C.-Y.; Ding, J.-Y.; Han, F.-S. Chem. Commun. 2014, 50, 8605.
(b) He, Y. Y.; Sun, X. X.; Li, G.-H.; Mei, G.-J.; Shi, F. J. Org. Chem. 2017, 82, 2462.
(c) Banerjee, A.; Sahu, S.; Maji, M. S. Adv. Synth. Catal. 2017, 359, 1860.
(d) Gong, Y.-X.; Wu, Q.; Zhang, H.-H.; Zhu, Q.-N.; Shi, F. Org. Biomol. Chem. 2015, 13, 7993.
[9] Li, C.; Zhang, H.-H.; Fan, T.; Shen, Y.; Wu, Q.; Shi, F. Org. Biomol. Chem. 2016, 14, 6932.
[10] Shen, Y.; Zhu, Z.-Q.; Liu, J.-X.; Yu, L.; Du, B.-X.; Mei, G.-J.; Shi, F. Synthesis. 2017, 49, 4025.
[11] (a) Xu, M.-M.; Wang, H.-Q.; Wan, Y.; Wang, S.-L.; Shi, F. J. Org. Chem. 2017, 82, 10226.
(b) Zhu, Z.-Q.; Shen, Y.; Sun, X.-X.; Tao, J.-Y.; Liu, J.-X.; Shi, F. Adv. Synth. Catal. 2017, 359, 3797.
[12] Sun, X.-X.; Zhang, H.-H.; Li, G.-H.; He, Y.-Y.; Shi, F. Chem. Eur. J. 2016, 22, 17526.
[13] Cao, K.-S.; Bian, H.-X.; Zheng, W.-H. Org. Biomol. Chem. 2015, 13, 6449.
[14] (a) Zhu, Z.-Q.; Shen, Y.; Liu, J.-X.; Tao, J.-Y.; Shi, F. Org. Lett. 2017, 19, 1542.
(b) Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y. X.; Shi, F. Angew. Chem., Int. Ed. 2017, 56, 116.
[15] Wan, Y.; Wang, H.-Q.; Xu, M.-M.; Mei, G.-J.; Shi, F. Org. Biomol. Chem. 2018, 16, 1536.
[16] CCDC:1831743; C37H36BrN3O3; (Mr) 650.60; monoclinic; a=30.9350(19) Å, b=15.8900(8) Å, c=20.1310(10) Å, α=90.00°, β=128.7120(10)°, γ=90.00°, Dm=1.119 g/cm3, Dc=1.099 g/cm3; 2; F(000)=2704, μ=3.127, space group P-1(no. 2)
/
〈 |
|
〉 |