研究简报

氯化胆碱催化醛、吲哚和丙二腈的三组分Yonemitsu缩合反应

展开
  • 辽宁师范大学化学化工学院 大连 116029

收稿日期: 2018-03-05

  修回日期: 2018-05-31

  网络出版日期: 2018-06-07

基金资助

国家自然科学基金(No.21403100)和国家级大学生创新创业训练计划(No.201710165304)资助项目.

Choline Chloride as Catalyst towards the Attractive Yonemitsu Reaction of Benzaldehyde, Indole, and Malononitrile

Expand
  • College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029

Received date: 2018-03-05

  Revised date: 2018-05-31

  Online published: 2018-06-07

Supported by

Project supported by the National Natural Science Foundation of China (No. 21403100), the National Students Program for Innovation and Entrepreneurship Training (No. 201710165304).

摘要

在乙醇和水的混合溶液中,使用廉价易得的氯化胆碱催化苯甲醛、丙二腈和吲哚的三组分Yonemitsu缩合反应,高产率地合成了一系列3-取代吲哚衍生物.实验结果表明,水的引入对该反应有很好的促进作用.由于催化剂极易溶于乙醇水溶液,大部分反应结束后只需要经过简单的抽滤和淋洗就可以达到分离和提纯的目的,避免了繁琐的后处理程序.催化剂可以循环使用5次,活性没有降低.

本文引用格式

杨中华, 刘兰野, 赵益鹤, 洪远琳, 阮鸿力, 吕成伟 . 氯化胆碱催化醛、吲哚和丙二腈的三组分Yonemitsu缩合反应[J]. 有机化学, 2018 , 38(10) : 2761 -2766 . DOI: 10.6023/cjoc201803007

Abstract

Using choline chloride as cheap and safe accelerator was efficient to promote the Yonemitsu type condensation of indole, benzaldehyde, and malononitrile. More importantly, introducing right amount of water in reaction system was crucial to get desired 3-substituted indoles in good to excellent yields. Due to the catalyst has excellent solubility in aqueous ethanol, the final concoction was easy to separate. Many desired products could be obtained after filtration and washed with cold aqueous ethanol without further purification. Catalyst could further reuse for five more reaction cycles with negligible loss in activity.

参考文献

[1] Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608.
[2] Kumar. A.; Gupta, M. K.; Kumar, M.; Saxena, D. RSC Adv. 2013, 3, 1673.
[3] Xia, A. B.; Wu, C.; Wang, T.; Zhang, Y. P.; Du, X. H.; Zhong, A. G.; Xu, D. Q.; Xu, Z. Y. Adv. Synth. Catal. 2014, 356, 1753.
[4] Miyaji, R.; Asano, K.; Matsubara, S. Org. Biomol. Chem. 2014, 12, 119.
[5] Zhu, X.; Zhou, X.; Xiang, D. Heterocycle 2015, 91, 1637.
[6] Banari, H.; Kiyani, H.; Pourali, A. Res. Chem. Intermed. 2017, 43, 1635.
[7] Rajesh, U. C.; Wang, J.; Prescott, S. ACS Sustainable Chem. Eng. 2014, 3, 9.
[8] Tayade, Y. A.; Patil, D. R.; Wagh, Y. B. Tetrahedron Lett. 2015, 56, 666.
[9] Reddy, M. V.; Reddy, G. C. S.; Jeong, Y. T. Tetrahedron Lett. 2016, 57, 1289.
[10] Zhu, S.; Xu, L.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2016, 36, 1229(in Chinese). (朱帅, 徐鲁斌, 王亮, 肖建, 有机化学, 2016, 36, 1229.)
[11] Li, M.; Zhang, B.; Gu, Y. Green Chem. 2012, 14, 2421.
[12] Vilches-Herrera, M.; Knepper, I.; De Souza, N. ACS Comb. Sci. 2012, 14, 434.
[13] Moosavi-Zare, A. R.; Zolfigol, M. A.; Farahmand, S.; Zare, A.; Pourali, A. R.; Ayazi-Nasrabadi, R. Synlett 2014, 193.
[14] Chandam, D. R.; Mulik, A. G.; Patil, P. P.; Jagdale, S. D.; Patil, D. R.; Deshmukh, M. B. Res. Chem. Intermed. 2015, 41, 761.
[15] Reddy, A. V. S.; Jeong, Y. T. Tetrahedron 2016, 72, 116.
[16] Zhang, G. W.; Wang, L.; Nie, J.; Ma, J. A. Adv. Synth. Catal. 2008, 350, 1457.
[17] Galzerano, P.; Pesciaioli, F.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7892.
[18] Kumar, A.; Gupta, M. K.; Kumar, M. Green Chem. 2012, 14, 290.
[19] Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Tetrahedron Lett. 1978, 19, 1759.
[20] Oikawa, Y.; Tanaka, M.; Hirasawa, H. Chem. Pharm. Bull. 1981, 29, 1606.
[21] Oikawa, Y.; Hirasawa, H.; Yonemitsu, O. Chem. Pharm. Bull. 1982, 30, 3092.
[22] Nemes, C.; Jeannin, L.; Sapi, J.; Laronze, M.; Seghir, H.; Augé, F.; Laronze, J. Y. Tetrahedron 2000, 56, 5479.
[23] Dardennes, E.; Kovács-Kulyassa, A.; Renzetti, A.; Sapi, J.; Laronze, J. Y. Tetrahedron Lett. 2003, 44, 221.
[24] Wang, C.; Zhang, Y. Q.; Li, G. S.; Li, J. C.; Li, X. L. Chin. J. Org. Chem. 2003, 23, 1416(in Chinese). (王春, 张英群, 李贵深, 李敬慈, 李晓陆, 有机化学, 2003, 23, 1416.)
[25] Cochard, F.; Laronze, M.; Sigaut, P.; Sapi, J.; Laronze, J. Y. Tetrahedron Lett. 2004, 45, 1703.
[26] Gerencsér, J.; Panka, G.; Nagy, T.; Egyed, O.; Dorman, G.; Urge, L.; Darvas, F. J. Comb. Chem. 2005, 7, 530.
[27] Yan, N.; Xia, J. H.; Xiong, Y. K.; Xiong, B.; Lin, C. H.; Liao, W. L. Chin. J. Org. Chem. 2014, 34, 2487(in Chinese). (严楠, 夏剑辉, 熊云奎, 熊斌, 林春花, 廖维林, 有机化学, 2014, 34, 2487.)
[28] Xu, Z. H. Chin. J. Org. Chem. 2014, 34, 1687(in Chinese). (许招会, 有机化学, 2014, 34, 1687.)
[29] Lin, C. H.; Xu, Z. H.; Liao, W. L.; Qiu, Z. Y.; Xia, J. H. Chin. J. Org. Chem. 2015, 35, 212(in Chinese). (林春花, 许招会, 廖维林, 邱曾烨, 夏剑辉, 有机化学, 2015, 35, 212.)
[30] Yan, N.; Xiong, Y. K.; Xia, J. H.; Rui, P. X.; Lei, Z. W.; Liao, W. L.; Xiong, B. Chin. J. Org. Chem. 2015, 35, 384(in Chinese). (严楠, 熊云奎, 夏剑辉, 芮培欣, 雷志伟, 廖维林, 熊斌, 有机化学, 2015, 35, 384.)
[31] Jing, L.; Wei, J.; Zhou, L.; Huang, Z. Y.; Li, Z. K.; Wu, D.; Xiang, H. F.; Zhou, X. G. Chem. Eur. J. 2010, 16, 10955.
[32] Zenz, I.; Mayr, H. J. Org. Chem. 2011, 76, 9370.
[33] Qu, Y.; Ke, F.; Zhou, L.; Li, Z.; Xiang, H.; Wu, D.; Zhou, X. Chem. Commun. 2011, 47, 3912.
[34] Anselmo, D.; Escudero-Adán, E. C.; Martínez, M.; Kleij, A. W. Eur. J. Inorg. Chem. 2012, 2012, 4694.
[35] Wang, L.; Huang, M.; Zhu, X.; Wang, Y. Appl. Catal. A:Gen. 2013, 454, 160.
[36] He, Y. H.; Cao, J. F.; Li, R.; Xiang, Y.; Yang, D. C.; Guan, Z. Tetrahedron 2015, 71, 9299.
[37] Ahad, A.; Farooqui, M. Chem. Sci. Trans. 2016, 5, 202.
[38] Amrollahi, M. A.; Kheilkordi, Z. J. Iran. Chem. Soc. 2016, 13, 925.
[39] Ghohe, N. M.; Tayebee, R.; Amini, M. M.; Osatiashtiani, A.; Lsaacs, M. A.;Lee, A. F. Tetrahedron 2017, 73, 5862.
[40] Radosevic, K.; Bubalo, M. C.; Srcek, V. G.; Grgas, D.; Dragicevic, T. L.; Redovnikovic, I. R. Ecotoxicol. Environ. Saf. 2015, 112, 53.
[41] Maugeri, Z.; De Maria, P. D. RSC Adv. 2012, 2, 421.
[42] Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V. Chem. Commun. 2003, 1, 70.
[43] Abbott, A. P.; Harris, R. C.; Ryder, K. S.; D'Agostino, C.; Gladden, L. F.; Mantle, M. D. Green Chem. 2011, 13, 82.
[44] Martins, M. A. P.; Paveglio, G. C.; Rodrigues, L. V.; Frizzo, C. P.; Zanatta, N.; Bonacorso, H. G. New. J. Chem. 2016, 40, 5989.
[45] Mao, S. X.; Li, F.; Lv, Y.; Lü, C. W.; Yü, S. J. Heterocycles 2017, 94, 1895.
[46] Xiao, D.; Zheng, W.; Wei, X. Y.; Lang, J.; Gao, S. Q.; Lyu, C. W. Chin. J. Appl. Chem. 2017, 34, 1295(in Chinese). (肖迪, 郑旺, 魏晓玉, 郎健, 高爽秋, 吕成伟, 应用化学, 2017, 34, 1295.)
[47] Jin, T. S.; Wang, A. Q.; Wang, X.; Zhang, J. S.; Li, T. S. Synlett 2004, 871.
[48] Ghosh, P. P.; Paul, S.; Das, A. R. Tetrahedron Lett. 2013, 54, 138.
[49] Singh, S.; Srivastava, A.; Mobin, S. M.; Samanta, S. RSC Adv. 2015, 5, 5010.
[50] Nemati, F.; Nikkhah, S. H.; Elhampour, A. Chin. Chem. Lett. 2015, 26, 1397.
[51] Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C. L.; Wang, C. Y. Green Chem. 2016, 18, 1032.
[52] Adib, M.; Yasaei, Z.; Mirzaei, P. Synlett 2016, 383.
[53] Shabalala, N.; Maddila, S.; Jonnalagadda, S. B. New. J. Chem. 2016, 40, 5107.
[54] Chen, L.; Bao, S.; Yang, L.; Zhang, X.; Li, B.; Li, Y. Res. Chem. Intermed. 2017, 43, 3883.
[55] Lyu, C. W.; Liu, Y. H.; Zhou, X. X.; Wang, J. J. Chin. J. Appl. Chem. 2015, 32, 1371(in Chinese). (吕成伟, 刘妍杭, 周晓霞, 王佳晶, 应用化学, 2014, 34, 1371.)
[56] Lü, C. W.; Liu, Y. H.; Zhou, X. X. Chin. J. Org. Chem. 2016, 36, 1407(in Chinese). (吕成伟, 刘妍杭, 周晓霞, 有机化学, 2016, 36, 1407.)
[57] Lü, C. W.; Wang, J. J.; Liu, Y. H.; Shan, W. J.; Sun, Q.; Shi, L. Res. Chem. Intermed. 2017, 43, 943.

文章导航

/