综述与进展

共价抑制剂的研究进展

展开
  • a 北京大学化学与分子工程学院化学生物学系 北京 100871;
    b 北大-清华生命科学研究中心 北京 100871

收稿日期: 2018-04-10

  修回日期: 2018-06-19

  网络出版日期: 2018-07-24

基金资助

国家重点研发计划(No.2017YFA0505200)、国家重点基础研究发展(973计划,No.2015CB856200)、国家自然科学基金(Nos.21472010,21521003,21561142002,21625201)资助项目.

Research Progress of Covalent Inhibitors

Expand
  • a Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871;
    b Peking-Tsinghua Center for Life Sciences, Beijing 100871

Received date: 2018-04-10

  Revised date: 2018-06-19

  Online published: 2018-07-24

Supported by

Project supported by the National Key Research and Development Program of China (No. 2017YFA0505200), the National Key Fundamental Research and Development of China (973 Program, No. 2015CB856200), the National Natural Science Foundation of China (Nos. 21472010, 21521003, 21561142002, 21625201).

摘要

共价抑制剂因其具有的优异的药代动力学特征,在近期的药物研发领域中起到了关键作用.共价抑制剂是一类有机小分子,能与特定的靶蛋白相互作用并形成共价键,导致蛋白质构象的改变,从而抑制蛋白质的活性.除了部分例外,通过共价抑制剂进行的蛋白质修饰通常是不可逆的.重点讨论通过迈克尔加成、亲核取代以及二硫键与蛋白质相互作用的商业共价抑制剂.有关于共价抑制剂中各种类型弹头的讨论,可以激发未来合理药物设计的灵感.

本文引用格式

董浩然, 苏比丁·塔依尔, 王鑫, 雷晓光 . 共价抑制剂的研究进展[J]. 有机化学, 2018 , 38(9) : 2296 -2306 . DOI: 10.6023/cjoc201804018

Abstract

The development of covalent inhibitors plays a major role in recent drug discovery due to their potential excellent pharmacokinetics. Covalent inhibitors are small organic molecules which interact with specific target proteins and form a covalent bond, resulting an alteration of the protein conformation and subsequently inhibit the protein activity. The modifications of proteins by covalent inhibitors are generally irreversible with some exceptions. In this review, the commercial covalent inhibitors that interact with proteins via Michael additions, nucleophilic substitution, or disulfide linkage are reviewed. The discussion on various types of warheads in covalent inhibitors could inspire future rational drug design.

参考文献

[1] Zhang, Y. K.; Lei, J. P.; Xie, D. Q. J. Am. Chem. Soc. 2015, 137, 70.
[2] Andrieu, J. P.; Guilmi, A. M. D.; Mouz, N.; Hoskins, J.; Jaskunas, S. R.; Gagnon, J.; Dideberg, O.; Vernet, T. J. Bacteriol. 1998, 180, 5652.
[3] Aronson, J. K. Meyler's Side Effects of Drugs, Elsevier Science, Amsterdam, 2016, p. 382.
[4] Drahl, C.; Cravatt, B. F.; Sorensen, E. J. Angew. Chem. Int. Ed. 2005, 44, 5788.
[5] Lu, L.; Michael, M.; Gu, Z. L.; Zhang, W. P. Sci. Rep. 2015, 5, 8783.
[6] Clement, L. L.; Tsakos, M.; Schaffert, E. S.; Scavenius, C.; Enghild, J. J.; Poulsen, T. B. Chem. Commun. 2015, 51, 12427.
[7] Uesugi, S.; Fujisawa, N.; Yoshida, J.; Watanabe, M.; Dan, S.; Yamori, T.; Shiono, Y.; Kimura, K. J. Antibiot. 2016, 69, 133.
[8] Albrecht, A.; Albrecht, L.; Janecki, T. Eur. J. Org. Chem. 2011, 2011, 2747.
[9] (a) Walker, E. H.; Pacold, M. E.; Perisic, O. Mol. Cell. 2000, 6, 909.
(b) Sorensen, E. J.; Drahl, C.; Cravatt, B. F. Angew. Chem., Int. Ed. 2005, 44, 5788.
[10] Bauman, J. E.; Jimeno, A.; Weissman, C.; Adkins, D.; Schnadig, I.; Beauregard, P.; Bowles, D. W.; Spira, A.; Levy, B.; Seetharamu, N.; Hausman, D.; Walker, L.; Rudin, C. M.; Shirai, K. Oral Oncol. 2015, 51, 383.
[11] Jones, J. B.; Middleton, H. W. Can. J. Chem. 1970, 48, 3819.
[12] Csuk, R.; Schwarz, S.; Siewert, B.; Kluge, R.; Strohl, D. Arch. Pharm. 2012, 345, 215.
[13] (a) Lei, X. G.; Yu, X. L.; Li, C. Org. Lett. 2010, 12, 4284.
(b) Lei, X. G.; Dong, T.; Li, C.; Wang, X.; Dian, L. Y.; Zhang, X. G.; Li. L.; Chen, S.; Cao, R.; Li, L.; Huang, N.; He, S. D. Nat. Commum. 2015, 6, 6522.
[14] Wei, L.; Wu, J.; Li, G.; Shi, N. Curr. Pharm. Des. 2012, 18, 1186.
[15] Díez-Dacal, B.; Perez-Sala, D. Cancer Lett. 2012, 320, 150.
[16] Grill, S. P.; Leung, C. H.; Lam, W.; Han, Q. B.; Sun, H. D.; Cheng, Y. C. Mol. Pharmacol. 2006, 70, 1946.
[17] Tanasova, M.; Sturla, S. J. Chem. Rev. 2012, 112, 3578.
[18] Cross, D. A. E.; Ashton, S. E.; Ghioghiu, S.; Eberlein, C.; Nebhan, C. A.; Spitzler, P. J.; Orme, J. P.; Finlay, M. R. V.; Ward, R. A.; Mellor, M. J.; Hughes, G.; Rahi, A.; Jacobs, V. N.; Brewer, M. R.; Mireille, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G. H. P.; Cantarini, M.; Kim, D. W.; Ranson, M. R.; Pao, W. Cancer Discovery 2014, 4, 1046.
[19] Jackson, P. A.; Widen, J. C.; Harki, D. A.; Brummond, K. M. J. Med. Chem. 2017, 60, 839.
[20] Ward, R. A.; Anderton, M. J.; Ashton, S.; Bethel, P. A.; Box, M.; Butterworth, S. J. Med. Chem. 2013, 56, 7025.
[21] Zhou, W. J.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D. N.; Capelletti, M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong, K. K.; Eck, M. J.; Gray, N. S.; Janne, P. A. Nature 2009, 462, 1070.
[22] Walter, A. O.; Sjin, R. T.; Haringsma, H. J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z. D.; Wang, Z. G.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D. Q.; Nacht, M.; Petter, R. C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A. D.; Harding, T. C.; Allen, A. Cancer Discovery 2013, 3, 1404.
[23] Campo, E.; Rule, S. Blood 2015, 125, 48.
[24] Wu, J. J.; Zhang, M. Z.; Liu, D. L. J. Hematol. Oncol. 2016, 9, 21.
[25] Barf, T.; Covey, T.; Izumi, R.; van der Kar, B.; Gulrajani, M.; van Lith, B.; van Hoek, M.; de Zwart, E.; Mittag, D.; Demont, D.; Verkaik, S.; Krantz, F.; Pearson, P. G.; Ulrich, R.; Kaptein, A. J. Pharmacol. Exp. Ther. 2017, 363, 240.
[26] Byrd, J. C.; Harrington, B.; O'Brien, S.; Jones, J. A.; Schuh, A.; Devereux, S.; Chaves, J.; Wierda, W. G.; Awan, F. T.; Brown, J. R.; Hillmen, P.; Stephens, D. M.; Ghia, P.; Barrientos, J. C.; Pagel, J. M.; Woyach, J.; Johnson, D.; Huang, J.; Wang, X.; Kaptein, A.; Lannutti, B. J.; Covey, T.; Fardis, M.; McGreivy, J.; Hamdy, A.; Rothbaum, W.; Izumi, R.; Diacovo, T. G.; Jojnson, A. J.; Furman, R. R. New. Engl. J. Med. 2016, 374, 323.
[27] Patel, V.; Balakrishnan, K.; Bibikova, E.; Ayres, M.; Keating, M. J.; Wierda, W. G.; Gandhi, V. Clin. Cancer Res. 2017, 23, 3734.
[28] Owens, T. D.; Yan, L. Compr. Med. Chem. Ⅲ 2017, 76.
[29] Meschini, E.; Mora-Vidal, R.; Martin, M. P.; Anscombe, E.; Staunton, D.; Geitmann, M.; Danielson, U. H.; Stanley, W. A.; Wang, L. Z.; Reuillon, T.; Golding, B. T.; Cano, C.; Newell, D. R.; Nobel, M. E. M.; Wedge, S. R.; Endicott, J. A.; Griffin, R. J. Chem. Biol. 2015, 22, 1159.
[30] Larraufie, M. H.; Yang, W. S.; Jiang, E.; Thomas, A. G.; Slusher, B. S.; Stockwell, B. R. Bioorg. Med. Chem. Lett. 2015, 25, 4787.
[31] Steinkopf, W. J. Prakt. Chem. 1927, 117, 1.
[32] Gold, A. M.; Fahrney, D. J. Am. Chem. Soc. 1963, 85, 997.
[33] Narayanan, A.; Jones, L. H. Chem. Sci. 2015, 6, 2650.
[34] Dong, J. J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430.
[35] Moss, D. E.; Berlanga, P.; Hagan, M. M.; Sandoval, H. Alzheimer Dis. Assoc. Disord. 1999, 13, 20.
[36] Corbett, T. H.; Leopold, W. R.; Dykes, D. J.; Roberts, B. J.; Griswold, D. P.; Schabel, F. M. Cancer Res. 1982, 42, 1707.
[37] Kumar, A. A.; Mangum, J. H.; Blankenship, D. T.; Freisheim, J. H. J. Biol. Chem. 1981, 256, 8970.
[38] Baker, B. R.; Wood, W. F. J. Med. Chem. 1969, 12, 214.
[39] Baker, B. R.; Hurlbut, J. A. J. Med. Chem. 1969, 12, 221.
[40] Baker, B. R.; Wood, W. F. J. Med. Chem. 1969, 12, 216.
[41] Karanian, D. A.; Brown, Q. B.; Makriyannis, A.; Kosten, T. A.; Bahr, B. A. J. Neurosci. 2005, 25, 7813.
[42] Kokotos, G.; Kotsovolou, S.; Constantinou-Kokotou, V.; Wu, G. S.; Olivecrona, G. Bioorg. Med. Chem. Lett. 2000, 10, 2803.
[43] Brummond, K. M.; Jackson, P. A.; Widen, J. C.; Harki, D. A. J. Med. Chem. 2017, 60, 839.
[44] Gushwa, N. N.; Kang, S. M.; Chen, J.; Taunton, J. J. Am. Chem. Soc. 2012, 134, 20214.
[45] Potashman, M. H.; Duggan, M. E. J. Med. Chem. 2009, 52, 1231.
[46] Fellenius, E.; Berglindh, T.; Sachs, G.; Olbe, L.; Elander, B.; Sjcstrand, S. E.; Wallmark, B. Nature 1981, 290, 159.
[47] Gonzμlez-Bello, C. Chem. Med. Chem. 2016, 11, 22.
[48] Andersson, T.; Rohss, K.; Bredberg, E.; Hassan-Alin, M. Aliment. Pharmacol. Ther. 2001, 15, 1563.
[49] Baillie, T. A. Angew. Chem., Int. Ed. 2016, 55, 13408.
[50] Gonzalez-Bello, C. Chem. Med. Chem. 2015, 11, 22.
[51] Baker, W. L.; White, C. M. Am. J. Cardiovasc. Drugs 2009, 9, 213.
[52] Wiviott, S. D.; Braunwald, E.; McCabe, C. H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.; Ardissino, D.; De Servi, S.; Murphy, S. A.; Riesmeyer, J.; Weerakkody, G.; Gibson, C. M.; Antman, E. M. N. Engl. J. Med. 2007, 357, 2001.
[53] John, J.; Koshy, S. J. Am. Board Fam. Med. 2012, 25, 343.
[54] Njoroge, F. G.; Chen, X. X.; Shih, N. Y.; Piwinski, J. J. Acc. Chem. Res. 2008, 41, 50.
[55] Taunton, J.; Serafimova, I. M.; Pufall, M. A.; Krishnan, S.; Duda, K.; Cohen, M. S.; maglathlin, R. L.; McFarlan, J. M.; Miller, R. M.; Frodin, M. Nat. Chem. Biol. 2012, 5, 471.
[56] Moitessier, N.; De Cesco, S.; Kurian, J.; Dufresne, C.; Mit-termaier, A. K. Eur. J. Med. Chem. 2017, 138, 96.
[57] Bradshaw, J. W.; McFarland, J. M.; Paavilainen, V. O.; Bisconte, A.; Tam, D.; Phan, V. T.; Romanov, S.; Finkle, D.; Shu, J.; Patel, V.; Ton, T.; Li, X. Y.; Loughhead, D. G.; Nunn, P. A.; Karr, D. E.; Gerritsen, M. E.; Funk, J. O.; Owen, T. D.; Verner, E.; Brameld, K. A.; Hill, R. J.; Goldstein, D. M.; Taunton, J. Nat. Chem. Biol. 2015, 7, 525.
[58] Liu, Q. S.; Sabnis, Y.; Zhao, Z.; Zhang, T. H.; Buhrlage, S. J.; Jones, L. H.; Gray, N. S. Chem. Biol. 2013, 20, 146.

文章导航

/