共价抑制剂的研究进展
收稿日期: 2018-04-10
修回日期: 2018-06-19
网络出版日期: 2018-07-24
基金资助
国家重点研发计划(No.2017YFA0505200)、国家重点基础研究发展(973计划,No.2015CB856200)、国家自然科学基金(Nos.21472010,21521003,21561142002,21625201)资助项目.
Research Progress of Covalent Inhibitors
Received date: 2018-04-10
Revised date: 2018-06-19
Online published: 2018-07-24
Supported by
Project supported by the National Key Research and Development Program of China (No. 2017YFA0505200), the National Key Fundamental Research and Development of China (973 Program, No. 2015CB856200), the National Natural Science Foundation of China (Nos. 21472010, 21521003, 21561142002, 21625201).
董浩然, 苏比丁·塔依尔, 王鑫, 雷晓光 . 共价抑制剂的研究进展[J]. 有机化学, 2018 , 38(9) : 2296 -2306 . DOI: 10.6023/cjoc201804018
The development of covalent inhibitors plays a major role in recent drug discovery due to their potential excellent pharmacokinetics. Covalent inhibitors are small organic molecules which interact with specific target proteins and form a covalent bond, resulting an alteration of the protein conformation and subsequently inhibit the protein activity. The modifications of proteins by covalent inhibitors are generally irreversible with some exceptions. In this review, the commercial covalent inhibitors that interact with proteins via Michael additions, nucleophilic substitution, or disulfide linkage are reviewed. The discussion on various types of warheads in covalent inhibitors could inspire future rational drug design.
Key words: covalent inhibitors; warheads; drug design
[1] Zhang, Y. K.; Lei, J. P.; Xie, D. Q. J. Am. Chem. Soc. 2015, 137, 70.
[2] Andrieu, J. P.; Guilmi, A. M. D.; Mouz, N.; Hoskins, J.; Jaskunas, S. R.; Gagnon, J.; Dideberg, O.; Vernet, T. J. Bacteriol. 1998, 180, 5652.
[3] Aronson, J. K. Meyler's Side Effects of Drugs, Elsevier Science, Amsterdam, 2016, p. 382.
[4] Drahl, C.; Cravatt, B. F.; Sorensen, E. J. Angew. Chem. Int. Ed. 2005, 44, 5788.
[5] Lu, L.; Michael, M.; Gu, Z. L.; Zhang, W. P. Sci. Rep. 2015, 5, 8783.
[6] Clement, L. L.; Tsakos, M.; Schaffert, E. S.; Scavenius, C.; Enghild, J. J.; Poulsen, T. B. Chem. Commun. 2015, 51, 12427.
[7] Uesugi, S.; Fujisawa, N.; Yoshida, J.; Watanabe, M.; Dan, S.; Yamori, T.; Shiono, Y.; Kimura, K. J. Antibiot. 2016, 69, 133.
[8] Albrecht, A.; Albrecht, L.; Janecki, T. Eur. J. Org. Chem. 2011, 2011, 2747.
[9] (a) Walker, E. H.; Pacold, M. E.; Perisic, O. Mol. Cell. 2000, 6, 909.
(b) Sorensen, E. J.; Drahl, C.; Cravatt, B. F. Angew. Chem., Int. Ed. 2005, 44, 5788.
[10] Bauman, J. E.; Jimeno, A.; Weissman, C.; Adkins, D.; Schnadig, I.; Beauregard, P.; Bowles, D. W.; Spira, A.; Levy, B.; Seetharamu, N.; Hausman, D.; Walker, L.; Rudin, C. M.; Shirai, K. Oral Oncol. 2015, 51, 383.
[11] Jones, J. B.; Middleton, H. W. Can. J. Chem. 1970, 48, 3819.
[12] Csuk, R.; Schwarz, S.; Siewert, B.; Kluge, R.; Strohl, D. Arch. Pharm. 2012, 345, 215.
[13] (a) Lei, X. G.; Yu, X. L.; Li, C. Org. Lett. 2010, 12, 4284.
(b) Lei, X. G.; Dong, T.; Li, C.; Wang, X.; Dian, L. Y.; Zhang, X. G.; Li. L.; Chen, S.; Cao, R.; Li, L.; Huang, N.; He, S. D. Nat. Commum. 2015, 6, 6522.
[14] Wei, L.; Wu, J.; Li, G.; Shi, N. Curr. Pharm. Des. 2012, 18, 1186.
[15] Díez-Dacal, B.; Perez-Sala, D. Cancer Lett. 2012, 320, 150.
[16] Grill, S. P.; Leung, C. H.; Lam, W.; Han, Q. B.; Sun, H. D.; Cheng, Y. C. Mol. Pharmacol. 2006, 70, 1946.
[17] Tanasova, M.; Sturla, S. J. Chem. Rev. 2012, 112, 3578.
[18] Cross, D. A. E.; Ashton, S. E.; Ghioghiu, S.; Eberlein, C.; Nebhan, C. A.; Spitzler, P. J.; Orme, J. P.; Finlay, M. R. V.; Ward, R. A.; Mellor, M. J.; Hughes, G.; Rahi, A.; Jacobs, V. N.; Brewer, M. R.; Mireille, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G. H. P.; Cantarini, M.; Kim, D. W.; Ranson, M. R.; Pao, W. Cancer Discovery 2014, 4, 1046.
[19] Jackson, P. A.; Widen, J. C.; Harki, D. A.; Brummond, K. M. J. Med. Chem. 2017, 60, 839.
[20] Ward, R. A.; Anderton, M. J.; Ashton, S.; Bethel, P. A.; Box, M.; Butterworth, S. J. Med. Chem. 2013, 56, 7025.
[21] Zhou, W. J.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D. N.; Capelletti, M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong, K. K.; Eck, M. J.; Gray, N. S.; Janne, P. A. Nature 2009, 462, 1070.
[22] Walter, A. O.; Sjin, R. T.; Haringsma, H. J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z. D.; Wang, Z. G.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D. Q.; Nacht, M.; Petter, R. C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A. D.; Harding, T. C.; Allen, A. Cancer Discovery 2013, 3, 1404.
[23] Campo, E.; Rule, S. Blood 2015, 125, 48.
[24] Wu, J. J.; Zhang, M. Z.; Liu, D. L. J. Hematol. Oncol. 2016, 9, 21.
[25] Barf, T.; Covey, T.; Izumi, R.; van der Kar, B.; Gulrajani, M.; van Lith, B.; van Hoek, M.; de Zwart, E.; Mittag, D.; Demont, D.; Verkaik, S.; Krantz, F.; Pearson, P. G.; Ulrich, R.; Kaptein, A. J. Pharmacol. Exp. Ther. 2017, 363, 240.
[26] Byrd, J. C.; Harrington, B.; O'Brien, S.; Jones, J. A.; Schuh, A.; Devereux, S.; Chaves, J.; Wierda, W. G.; Awan, F. T.; Brown, J. R.; Hillmen, P.; Stephens, D. M.; Ghia, P.; Barrientos, J. C.; Pagel, J. M.; Woyach, J.; Johnson, D.; Huang, J.; Wang, X.; Kaptein, A.; Lannutti, B. J.; Covey, T.; Fardis, M.; McGreivy, J.; Hamdy, A.; Rothbaum, W.; Izumi, R.; Diacovo, T. G.; Jojnson, A. J.; Furman, R. R. New. Engl. J. Med. 2016, 374, 323.
[27] Patel, V.; Balakrishnan, K.; Bibikova, E.; Ayres, M.; Keating, M. J.; Wierda, W. G.; Gandhi, V. Clin. Cancer Res. 2017, 23, 3734.
[28] Owens, T. D.; Yan, L. Compr. Med. Chem. Ⅲ 2017, 76.
[29] Meschini, E.; Mora-Vidal, R.; Martin, M. P.; Anscombe, E.; Staunton, D.; Geitmann, M.; Danielson, U. H.; Stanley, W. A.; Wang, L. Z.; Reuillon, T.; Golding, B. T.; Cano, C.; Newell, D. R.; Nobel, M. E. M.; Wedge, S. R.; Endicott, J. A.; Griffin, R. J. Chem. Biol. 2015, 22, 1159.
[30] Larraufie, M. H.; Yang, W. S.; Jiang, E.; Thomas, A. G.; Slusher, B. S.; Stockwell, B. R. Bioorg. Med. Chem. Lett. 2015, 25, 4787.
[31] Steinkopf, W. J. Prakt. Chem. 1927, 117, 1.
[32] Gold, A. M.; Fahrney, D. J. Am. Chem. Soc. 1963, 85, 997.
[33] Narayanan, A.; Jones, L. H. Chem. Sci. 2015, 6, 2650.
[34] Dong, J. J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430.
[35] Moss, D. E.; Berlanga, P.; Hagan, M. M.; Sandoval, H. Alzheimer Dis. Assoc. Disord. 1999, 13, 20.
[36] Corbett, T. H.; Leopold, W. R.; Dykes, D. J.; Roberts, B. J.; Griswold, D. P.; Schabel, F. M. Cancer Res. 1982, 42, 1707.
[37] Kumar, A. A.; Mangum, J. H.; Blankenship, D. T.; Freisheim, J. H. J. Biol. Chem. 1981, 256, 8970.
[38] Baker, B. R.; Wood, W. F. J. Med. Chem. 1969, 12, 214.
[39] Baker, B. R.; Hurlbut, J. A. J. Med. Chem. 1969, 12, 221.
[40] Baker, B. R.; Wood, W. F. J. Med. Chem. 1969, 12, 216.
[41] Karanian, D. A.; Brown, Q. B.; Makriyannis, A.; Kosten, T. A.; Bahr, B. A. J. Neurosci. 2005, 25, 7813.
[42] Kokotos, G.; Kotsovolou, S.; Constantinou-Kokotou, V.; Wu, G. S.; Olivecrona, G. Bioorg. Med. Chem. Lett. 2000, 10, 2803.
[43] Brummond, K. M.; Jackson, P. A.; Widen, J. C.; Harki, D. A. J. Med. Chem. 2017, 60, 839.
[44] Gushwa, N. N.; Kang, S. M.; Chen, J.; Taunton, J. J. Am. Chem. Soc. 2012, 134, 20214.
[45] Potashman, M. H.; Duggan, M. E. J. Med. Chem. 2009, 52, 1231.
[46] Fellenius, E.; Berglindh, T.; Sachs, G.; Olbe, L.; Elander, B.; Sjcstrand, S. E.; Wallmark, B. Nature 1981, 290, 159.
[47] Gonzμlez-Bello, C. Chem. Med. Chem. 2016, 11, 22.
[48] Andersson, T.; Rohss, K.; Bredberg, E.; Hassan-Alin, M. Aliment. Pharmacol. Ther. 2001, 15, 1563.
[49] Baillie, T. A. Angew. Chem., Int. Ed. 2016, 55, 13408.
[50] Gonzalez-Bello, C. Chem. Med. Chem. 2015, 11, 22.
[51] Baker, W. L.; White, C. M. Am. J. Cardiovasc. Drugs 2009, 9, 213.
[52] Wiviott, S. D.; Braunwald, E.; McCabe, C. H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.; Ardissino, D.; De Servi, S.; Murphy, S. A.; Riesmeyer, J.; Weerakkody, G.; Gibson, C. M.; Antman, E. M. N. Engl. J. Med. 2007, 357, 2001.
[53] John, J.; Koshy, S. J. Am. Board Fam. Med. 2012, 25, 343.
[54] Njoroge, F. G.; Chen, X. X.; Shih, N. Y.; Piwinski, J. J. Acc. Chem. Res. 2008, 41, 50.
[55] Taunton, J.; Serafimova, I. M.; Pufall, M. A.; Krishnan, S.; Duda, K.; Cohen, M. S.; maglathlin, R. L.; McFarlan, J. M.; Miller, R. M.; Frodin, M. Nat. Chem. Biol. 2012, 5, 471.
[56] Moitessier, N.; De Cesco, S.; Kurian, J.; Dufresne, C.; Mit-termaier, A. K. Eur. J. Med. Chem. 2017, 138, 96.
[57] Bradshaw, J. W.; McFarland, J. M.; Paavilainen, V. O.; Bisconte, A.; Tam, D.; Phan, V. T.; Romanov, S.; Finkle, D.; Shu, J.; Patel, V.; Ton, T.; Li, X. Y.; Loughhead, D. G.; Nunn, P. A.; Karr, D. E.; Gerritsen, M. E.; Funk, J. O.; Owen, T. D.; Verner, E.; Brameld, K. A.; Hill, R. J.; Goldstein, D. M.; Taunton, J. Nat. Chem. Biol. 2015, 7, 525.
[58] Liu, Q. S.; Sabnis, Y.; Zhao, Z.; Zhang, T. H.; Buhrlage, S. J.; Jones, L. H.; Gray, N. S. Chem. Biol. 2013, 20, 146.
/
〈 |
|
〉 |