植物天然化合物的人工合成之路
收稿日期: 2018-05-31
修回日期: 2018-07-30
网络出版日期: 2018-08-23
基金资助
国家自然科学基金(No.21672228)、中国科学院重点部署项目(Nos.KFZD-SW-215)、中国科学院B类先导科技专项培育项目(No.XDPB0400)和中国科学院国际大科学计划(No.153D31KYSB20170121)资助项目.
Route to Artificially Synthesize Plant Natural Products
Received date: 2018-05-31
Revised date: 2018-07-30
Online published: 2018-08-23
Supported by
Project supported by the National Natural Science Foundation of China (No. 21672228), the Key Deployment Projects of the Chinese Academy of Sciences (Nos. KFZD-SW-215), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDPB0400) and the International Great Science Program of the Chinese Academy of Sciences (No. 153D31KYSB20170121).
植物天然化合物及其衍生物是药物、保健品和食品添加剂等产品开发的源泉.新兴的合成生物学技术通过在微生物底盘细胞中重构与优化天然化合物的生物合成途径,实现目标化合物的从头合成,为结构复杂的珍稀植物天然化合物的规模化制备提供了新策略.介绍了青蒿素、人参皂苷、吗啡类生物碱、紫杉醇和长春花碱等重要植物天然化合物人工合成的研究进展.这些研究实例,不仅彰显了合成生物学及其与合成化学的结合在植物天然化合物人工合成方面的巨大应用潜力,也指明了未来植物天然化合物从头合成技术研发的导向.合成生物学与合成化学领域的新技术研发将进一步推动复杂天然化合物的生物合成途径解析、生物元件的挖掘与表征、新型底盘细胞的设计和开发以及生物合成与化学合成的强-强联合等方面的研究,助力天然化合物的人工合成技术从实验室走向市场.
王平平 , 杨成帅 , 李晓东 , 蒋雨果 , 严兴 , 周志华 . 植物天然化合物的人工合成之路[J]. 有机化学, 2018 , 38(9) : 2199 -2214 . DOI: 10.6023/cjoc201805060
Plant natural products and their derivatives are the important reservoirs for the development of medicines, health products and food additives. The synthetic biology technology brings new strategies to manufacture rare plant natural products with complicated structures at large scale by artificially constructing and optimizing the biosynthesis pathway of target compounds in microbial chassis cells. In this paper, the research progress on the artificial syntheses of important plant natural products such as artemisinin, ginsenosides, morphinan alkaloids, paclitaxel and vinblastine is reviewed. These examples not only demonstrate the great potentials of synthetic biology as well as its combination with synthetic chemistry applied in the artificial syntheses of plant natural compounds, but also show us the roadmap for future research and development on de novo synthesis of plant natural products. New technologies developed in synthetic biology and synthetic chemistry would further promote the unveiling of biosynthetic pathways of complex natural compounds, the discovery and characterization of key bioparts, the design and building of novel chassis cells, the strong-strong combination of biosynthesis and chemical synthesis, and thus accelerate the process to transfer the developed technologies to artificially synthesize plant natural products from laboratories to markets.
[1] Chang, M. C. Y.; Keasling, J. D. Nat. Chem. Biol. 2006, 2, 674.
[2] Paddon, C. J.; Keasling, J. D. Nat. Rev. Microbiol. 2014, 12, 355.
[3] Morrison, K. C.; Hergenrother, P. J. Nat. Prod. Rep. 2014, 31, 6.
[4] (a) Chen, J. C.; Chen, X. C.; Bois-Choussy, M.; Zhu, J. P. J. Am. Chem. Soc. 2006, 128, 87.
(b) Cuevas, C.; Perez, M.; Martin, M. J.; Chicharro, J. L.; Fernandez-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de la Calle, F.; Garcia, J.; Polanco, C.; Rodriguez, I.; Manzanares, I. Org. Lett. 2000, 2, 2545.
[5] Horwitz, S. B. Nature 1994, 367, 593.
[6] (a) Shibata, S. J. Korean Med. Sci. 2001, 16, S28.
(b) Liu, Z. Q. Chem. Rev. 2012, 112, 3329.
[7] Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Rev. Microbiol. 2014, 12, 381.
[8] Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. Nature 2013, 496, 528.
[9] Yan, X.; Fan, Y.; Wei, W.; Wang, P. P.; Liu, Q. F.; Wei, Y. J.; Zhang, L.; Zhao, G. P.; Yue, J. M.; Zhou, Z. H. Cell Res. 2014, 24, 770.
[10] Rodriguez, A.; Kildegaard, K. R.; Li, M. J.; Borodina, I.; Nielsen, J. Metab. Eng. 2015, 31, 181.
[11] Li, M.; Kildegaard, K. R.; Chen, Y.; Rodriguez, A.; Borodina, I.; Nielsen, J. Metab. Eng. 2015, 32, 1.
[12] Galanie, S.; Thodey, K.; Trenchard, I. J.; Filsinger, I. M.; Smolke, C. D. Science 2015, 349, 1095.
[13] Westfall, P. J.; Pitera, D. J.; Lenihan, J. R.; Eng, D.; Woolard, F. X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D. J.; Owens, A.; Fickes, S.; Diola, D.; Benjamin, K. R.; Keasling, J. D.; Leavell, M. D.; McPhee, D. J.; Renninger, N. S.; Newman, J. D.; Paddon, C. J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E111.
[14] Tu, Y. Y. Nat. Med. 2011, 17, 1217.
[15] Martin, V. J.; Yoshikuni, Y.; Keasling, J. D. Biotechnol. Bioeng. 2001, 75, 497.
[16] Martin, V. J.; Pitera, D. J.; Withers, S. T.; Newman, J. D.; Keasling, J. D. Nat. Biotechnol. 2003, 21, 796.
[17] Ro, D. K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J.; Chang, M. C.; Withers, S. T.; Shiba, Y.; Sarpong, R.; Keasling, J. D. Nature 2006, 440, 940.
[18] Chang, M. C.; Eachus, R. A.; Trieu, W.; Ro, D. K.; Keasling, J. D. Nat. Chem. Biol. 2007, 3, 274.
[19] Zhang, Y.; Teoh, K. H.; Reed, D. W.; Maes, L.; Goossens, A.; Olson, D. J.; Ross, A. R.; Covello, P. S. J. Biol. Chem. 2008, 283, 21501.
[20] Teoh, K. H.; Polichuk, D. R.; Reed, D. W.; Covello, P. S. Botany 2009, 87, 635.
[21] Carlsen, S.; Ajikumar, P. K.; Formenti, L. R.; Zhou, K.; Phon, T. H.; Nielsen, M. L.; Lantz, A. E.; Kielland-Brandt, M. C.; Stephanopoulos, G. Appl. Microbiol. Biotechnol. 2013, 97, 5753.
[22] (a) Wu, Y.-L.; He, Z.-L. Highlights of Total Synthesis Natural Products:Terpenes, Science Press, Beijing, 2009, pp. 41~42(in Chinese). (吴毓林, 何子乐, 天然产物全合成荟萃——萜类, 科学出版社, 北京, 2009, pp. 41~42.)
(b) Xu, X.-X.; Zhu, J.; Huang, D.-Z.; Zhou, W.-S. Acta Chim. Sinica 1983, 41, 574(in Chinese). (许杏祥, 朱杰, 黄大中, 周维善, 化学学报, 1983, 41, 574.)
[23] (a) Ye, B.; Wu, Y. L. Tetrahedron 1989, 45, 7287.
(b) Ye, B.; Wu, Y. L. J. Chem. Soc., Chem. Commun. 1990, 726.
[24] Lévesque, F.; Seeberger, P. P. H. Angew. Chem., Int. Ed. 2012, 51, 1706.
[25] Liu, D.-L.; Zhang, W.-B.; Yuan, Q.-J. CN 102718773, 2012[Chem. Abstr. 2012, 157, 634538].
[26] Chen, H. J.; Han, W. B.; Hao, H. D.; Wu, Y. Tetrahedron 2013, 69, 1112.
[27] Turconi, J.; Griolet, F.; Guevel, R.; Oddon, G.; Villa, R.; Geatti, A.; Hvala, M.; Kai, R.; Göller, R.; Burgard, A. Org. Process Res. Dev. 2014, 18, 417.
[28] Chae, S.; Kang, K. A.; Chang, W. Y.; Kim, M. J.; Lee, S. J.; Lee, Y. S.; Kim, H. S.; Kim, D. H.; Hyun, J. W. J. Agric. Food. Chem. 2009, 57, 5777.
[29] Han, J. Y.; Kim, H. J.; Kwon, Y. S.; Choi, Y. E. Plant Cell Physiol. 2011, 52, 2062.
[30] Han, J. Y.; Hwang, H. S.; Choi, S. W.; Kim, H. J.; Choi, Y. E. Plant Cell Physiol. 2012, 53, 1535.
[31] Dai, Z. B.; Wang, B. B.; Liu, Y.; Shi, M. Y.; Wang, D.; Zhang, X. N.; Liu, T.; Huang, L. Q.; Zhang, X. L. Sci. Rep. 2014, 4, 3698.
[32] (a) Wang, P. P.; Wei, Y. J.; Fan, Y.; Liu, Q. F.; Wei, W.; Yang, C. S.; Zhang, L.; Zhao, G. P.; Yue, J. M.; Yan, X.; Zhou, Z. H. Metab. Eng. 2015, 29, 97.
(b) Wei, W.; Wang, P. P.; Wei, Y. J.; Liu, Q. F.; Yang, C. S.; Zhao, G. P.; Yue, J. M.; Yan, X.; Zhou, Z. H. Mol. Plant 2015, 8, 1412.
[33] (a) Kai, G. Y.; Xu, H.; Zhou, C. C.; Liao, P.; Xiao, J. B.; Luo, X. Q.; You, L. J.; Zhang, L. Metab. Eng. 2011, 13, 319.
(b) Zhou, L. M.; Zuo, Z.; Chow, M. S. S. J. Clin. Pharmacol. 2005, 45, 1345.
[34] Zhou, Y. J. J.; Gao, W.; Rong, Q. X.; Jin, G. J.; Chu, H. Y.; Liu, W. J.; Yang, W.; Zhu, Z. W.; Li, G. H.; Zhu, G. F.; Huang, L. Q.; Zhao, Z. B. K. J. Am. Chem. Soc. 2012, 134, 3234.
[35] Dai, Z. B.; Liu, Y.; Huang, L. Q.; Zhang, X. L. Biotechnol. Bioeng. 2012, 109, 2845.
[36] Guo, J.; Zhou, Y. J. J.; Hillwigc, M. L.; Shen, Y.; Yang, L.; Wang, Y. J.; Zhang, X. A.; Liu, W. J.; Peters, R. J.; Chen, X. Y.; Zhao, Z. B. K.; Huang, L. Q. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12108.
[37] Yao, Y. F.; Wang, C. S.; Qiao, J.; Zhao, G. R. Metab. Eng. 2013, 19, 79.
[38] Bai, Y. F.; Bi, H. P.; Zhuang, Y. B.; Liu, C.; Cai, T.; Liu, X. N.; Zhang, X. L.; Liu, T.; Ma, Y. H. Sci. Rep. 2014, 4, 6640.
[39] Bai, Y. F.; Yin, H.; Bi, H. P.; Zhuang, Y. B.; Liu, T.; Ma, Y. H. Metab. Eng. 2016, 35, 138.
[40] Hawkins, K. M.; Smolke, C. D. Nat. Chem. Biol. 2008, 4, 564-73.
[41] DeLoache, W. C.; Russ, Z. N.; Narcross, L.; Gonzales, A. M.; Martin, V. J.; Dueber, J. E. Nat. Chem. Biol. 2015, 11, 465.
[42] (a) Winzer, T.; Kern, M.; King, A. J.; Larson, T. R.; Teodor, R. I.; Donninger, S. L.; Li, Y.; Dowle, A. A.; Cartwright, J.; Bates, R.; Ashford, D.; Thomas, J.; Walker, C.; Bowser, T. A.; Graham, I. A. Science 2015, 349, 309.
(b) Farrow, S. C.; Hagel, J. M.; Beaudoin, G. A.; Burns, D. C.; Facchini, P. J. Nat. Chem. Biol. 2015, 11, 728.
[43] Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C. D. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E3922.
[44] Trenchard, I. J.; Smolke, C. D. Metab. Eng. 2015, 30, 96.
[45] Fossati, E.; Ekins, A.; Narcross, L.; Zhu, Y.; Falgueyret, J. P.; Beaudoin, G. A. W.; Facchini, P. J.; Martin, V. J. J. Nat. Commun. 2014, 5, 3283.
[46] Mountford, P. G. In Green Chemistry in the Pharmaceutical Industry, Eds.:Dunn, P. J.; Wells, A. S.; Williams, M. T., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010, pp. 145~160.
[47] (a) Nicolaou, K. C.; Dai, W. M.; Guy, R. K. Angew. Chem., Int. Ed. 1994, 33, 15.
(b) Gueritte-Voegelein, F.; Guenard, D.; Dubois, J.; Wahl, A.; Potier, P. J. Pharm. Belg. 1994, 49, 193.
(c) Guenard, D.; Guerittevoegelein, F.; Potier, P. Acc. Chem. Res. 1993, 26, 160.
[48] Yang, T.; Li, M.; Chen, J. M. Nat. Prod. Res. 2006, 20, 119.
[49] Commercon, A.; Bourzat, J. D.; Didier, E.; Lavelle, F. ACS Symp. Ser. 1995, 583, 233.
[50] Ajikumar, P. K.; Xiao, W. H.; Tyo, K. E. J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T. H.; Pfeifer, B.; Stephanopoulos, G. Science 2010, 330, 70.
[51] Wildung, M. R.; Croteau, R. J. Biol. Chem. 1996, 271, 9201.
[52] (a) Chau, M.; Croteau, R. Arch. Biochem. Biophys. 2004, 427, 48.
(b) Chau, M.; Jennewein, S.; Walker, K.; Croteau, R. Chem. Biol. 2004, 11, 663.
(c) Jennewein, S.; Long, R. M.; Williams, R. M.; Croteau, R. Chem. Biol. 2004, 11, 379.
(d) Jennewein, S.; Rithner, C. D.; Williams, R. M.; Croteau, R. B. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 13595.
(e) Jennewein, S.; Wildung, M. R.; Chau, M.; Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9149.
(f) Schoendorf, A.; Rithner, C. D.; Williams, R. M.; Croteau, R. B. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 1501.
[53] (a) Guerra-Bubb, J.; Croteau, R.; Williams, R. M., Nat. Prod. Rep. 2012, 29, 683.
(b) McElroy C.; Jennewein S. In Biotechnology of Natural Products, Eds.:Schwab, W.; Lange, B.; Wüst, M., Springer, Cham, 2018, pp. 145~185.
[54] (a) Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 13591.
(b) Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 583.
(c) Walker, K.; Schoendorf, A.; Croteau, R. Arch. Biochem. Biophys. 2000, 374, 371.
[55] Walker, K.; Fujisaki, S.; Long, R.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12715.
[56] Walker, K.; Long, R.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9166.
[57] Muchiri, R.; Walker, K. D. Chem. Biol. 2012, 19, 679.
[58] Zhou, K.; Qiao, K. J.; Edgar, S.; Stephanopoulos, G. Nat. Biotechnol. 2015, 33, 377.
[59] Biggs, B. W.; Lim, C. G.; Sagliani, K.; Shankar, S.; Stephanopoulos, G.; De Mey, M.; Ajikumar, P. K. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3209.
[60] Zhu, J.; Wang, M.; Wen, W.; Yu, R. Pharmacogn. Rev. 2015, 9, 24.
[61] Van Der Heijden, R.; Jacobs, D. I.; Snoeijer, W.; Hallard, D.; Verpoorte, R. Curr. Med. Chem. 2004, 11, 607.
[62] (a) Miettinen, K.; Dong, L.; Navrot, N.; Schneider, T.; Burlat, V.; Pollier, J.; Woittiez, L.; van der Krol, S.; Lugan, R.; Ilc, T.; Verpoorte, R.; Oksman-Caldentey, K. M.; Martinoia, E.; Bouwmeester, H.; Goossens, A.; Memelink, J.; Werck-Reichhart, D. Nat. Commun. 2014, 5, 3606.
(b) Collu, G.; Unver, N.; Peltenburg-Looman, A. M.; van der Heijden, R.; Verpoorte, R.; Memelink, J. FEBS Lett. 2001, 508, 215.
(c) Irmler, S.; Schroder, G.; St-Pierre, B.; Crouch, N. P.; Hotze, M.; Schmidt, J.; Strack, D.; Matern, U.; Schroder, J. Plant J. 2000, 24(6), 797.
(d) Geu-Flores, F.; Sherden, N. H.; Courdavault, V.; Burlat, V.; Glenn, W. S.; Wu, C.; Nims, E.; Cui, Y.; O'Connor, S. E. Nature 2012, 492, 138.
(e) Simkin, A. J.; Miettinen, K.; Claudel, P.; Burlat, V.; Guirimand, G.; Courdavault, V.; Papon, N.; Meyer, S.; Godet, S.; St-Pierre, B.; Giglioli-Guivarc'h, N.; Fischer, M. J.; Memelink, J.; Clastre, M. Phytochemistry 2013, 85, 36.
[63] Brown, S.; Clastre, M.; Courdavault, V.; O'Connor, S. E. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3205.
[64] Qu, Y.; Easson, M.; Simionescu, R.; Hajicek, J.; Thamm, A. M. K.; Salim, V.; De Luca, V. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3180.
[65] Caputi, L.; Franke, J.; Farrow, S. C.; Chung, K.; Payne, R. M. E.; Nguyen, T. D.; Dang, T. T.; Soares Teto Carqueijeiro, I.; Kou-dounas, K.; Duge de Bernonville, T.; Ameyaw, B.; Jones, D. M.; Vieira, I. J. C.; Courdavault, V.; O'Connor, S. E. Science 2018.
[66] (a) Liscombe, D. K.; O'Connor, S. E. Phytochemistry 2011, 72, 1969.
(b) Qu, Y.; Easson, M. L.; Froese, J.; Simionescu, R.; Hudlicky, T.; De Luca, V. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 6224.
[67] Sottomayor, M.; Lopez-Serrano, M.; DiCosmo, F.; Ros Barcelo, A. FEBS Lett. 1998, 428, 299.
[68] Shang, Y.; Ma, Y. S.; Zhou, Y.; Zhang, H. M.; Duan, L. X.; Chen, H. M.; Zeng, J. G.; Zhou, Q.; Wang, S. H.; Gu, W. J.; Liu, M.; Ren, J. W.; Gu, X. F.; Zhang, S. P.; Wang, Y.; Yasukawa, K.; Bouwmeester, H. J.; Qi, X. Q.; Zhang, Z. H.; Lucas, W. J.; Huang, S. W. Science 2014, 346, 1084.
[69] Yu, X.; Che, Z.; Xu, H. Chemistry 2017, 23, 4467.
[70] Marques, J. V.; Kim, K. W.; Lee, C.; Costa, M. A.; May, G. D.; Crow, J. A.; Davin, L. B.; Lewis, N. G. J. Biol. Chem. 2013, 288, 466.
[71] Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327.
[72] Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreno, M. A.; Martins, J. C.; Thevelein, J. M.; Goossens, A., Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1634.
[73] (a) Naesby, M.; Nielsen, S. V. S.; Nielsen, C. A. F.; Green, T.; Tange, T. O.; Simon, E.; Knechtle, P.; Hansson, A.; Schwab, M. S.; Titiz, O.; Folly, C.; Archila, R. E.; Maver, M.; Fiet, S. V.; Boussemghoune, T.; Janes, M.; Kumar, A. S. S.; Sonkar, S. P.; Mitra, P. P.; Benjamin, V. A. K.; Korrapati, N.; Suman, I.; Hansen, E. H.; Thybo, T.; Goldsmith, N.; Sorensen, A. S. Microb. Cell Fact. 2009, 8, 45.
(b) Klein, J.; Heal, J. R.; Hamilton, W. D. O.; Boussemghoune, T.; Tange, T. O.; Delegrange, F.; Jaeschke, G.; Hatsch, A.; Heim, J. ACS Synth. Biol. 2014, 3, 314.
[74] Wu, J. J.; Zhou, T. T.; Du, G. C.; Zhou, J. W.; Chen, J. PLoS One 2014, 9, e101492.
[75] Thodey, K.; Galanie, S.; Smolke, C. D. Nat. Chem. Biol. 2014, 10, 837.
[76] Zhou, Y. J.; Buijs, N. A.; Zhu, Z. W.; Gomez, D. O.; Boonsombuti, A.; Siewers, V.; Nielsen, J. J. Am. Chem. Soc. 2016, 138, 15368.
[77] Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.; Forest, C. R.; Church, G. M. Nature 2009, 460, 894.
[78] Guo, X.; Chavez, A.; Tung, A.; Chan, Y.; Kaas, C.; Yin, Y.; Cecchi, R.; Garnier, S. L.; Kelsic, E. D.; Schubert, M.; DiCarlo, J. E.; Collins, J. J.; Church, G. M. Nat. Biotechnol. 2018, 36, 540
[79] Caspeta, L.; Chen, Y.; Ghiaci, P.; Feizi, A.; Buskov, S.; Hallstrom, B. M.; Petranovic, D.; Nielsen, J. Science 2014, 346, 75.
/
〈 |
|
〉 |