噌啉类化合物的合成研究进展
收稿日期: 2018-06-15
修回日期: 2018-08-02
网络出版日期: 2018-09-10
基金资助
浙江工业大学科研启动基金(No.2017116002229)及中国博士后科学基金(No.2017M612024)资助项目.
Progress in the Synthesis of Cinnoline Derivatives
Received date: 2018-06-15
Revised date: 2018-08-02
Online published: 2018-09-10
Supported by
Project supported by the Scientific Start-Up Funding from Zhejiang University of Technology (No. 2017116002229) and the China Postdoctoral Science Foundation (No. 2017M612024).
苏琳 , 侯卫 . 噌啉类化合物的合成研究进展[J]. 有机化学, 2019 , 39(2) : 363 -376 . DOI: 10.6023/cjoc201806021
Cinnolines are "privileged scaffold" in new material and drug research, and development for their extensive biological activities such as anticancer, antibacterial, antiviral, anti-inflammatory, and sedative activities and good electron-accepting ability. As a result, the development of new synthetic routes to this important structure has been actively investigated in recent years. Especially, the C-H functionalization strategy has promoted the development of new methods greatly. The recent advances of the synthetic methods to cinnolines based on different synthetic strategies and raw materials are reviewed.
Key words: cinnolines; C-H functionalization; coupling; tandem reaction
[1] Bekhit, A. A. Boll. Chim. Farm. 2001, 140, 243.
[2] Lewgowd, W.; Stanczak, A. Arch. Pharm. Chem. Life Sci. 2007, 340, 65.
[3] Ruchelman, A. L.; Singh, S. K.; Ray, A.; Wu, X.; Yang, J.-M.; Zhou, N.; Liu, A.; Liu, L.-F.; LaVoie, E. J. Bioorg. Med. Chem. 2004, 12, 795.
[4] Barraja, P.; Diana, P.; Lauria, A.; Passannanti, A.; Almerico, A. M.; Minnei, C.; Longu, S.; Cogiu, D.; Musiu, C.; La Colla, P. Bioorg. Med. Chem. 1999, 7, 1591.
[5] Vaillancourt, V. A.; Larsen, S. D.; Nair, S. K. WO 0170706, 2001[Chem. Abstr. 2001, 135, 257250]
[6] (a) Siegfried, A.-G. FR 1393596, 1965[Chem. Abstr. 1965, 63, 2983].
(b) Schatz, F.; Wagner-Jauregg, T. Helv. Chim. Acta 1968, 51, 1919.
[7] Stanczak, A.; Lewgowd, W.; Ochocki, Z.; Pakulska, W.; Szadowska, A. Pharmazie 1997, 52, 91.
[8] Shen, Y.; Shang, Z.; Yang, Y.; Zhu, S.; Qian, X.; Shi, P.; Zheng, J.; Yang, Y. J. Org. Chem. 2015, 80, 5906.
[9] Tsuji, H.; Yokoi, Y.; Sato, Y.; Tanaka, H.; Nakamura, E. Chem. Asian J. 2011, 6, 2005.
[10] Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Peng, L.-C.; Chen, T.; Xing, L.; Liu, S.-W. Polymer 2011, 52, 6011.
[11] (a) Leonard, N. J. Chem. Rev. 1945, 37, 269.
(b) Vinogradova, O. V.; Balova, I. A. Chem. Heterocycl. Compd. 2008, 44, 501.
(c) Han, Y.-T.; Jung, J.-W.; Kim, N.-J. Curr. Org. Chem. 2017, 21, 1265.
(d) Mathew, T.; Papp, A. A.; Paknia, F.; Fustero, S.; Prakash, G. K. S. Chem. Soc. Rev. 2017, 46, 3060.
[12] Richter, V. V. Berichte. 1883, 16, 677.
[13] Senadi, G. C.; Gore, B.; Hu, W.-P.; Wang, J.-J. Org. Lett. 2016, 18, 2890.
[14] (a) Widman, O. Berichte 1884, 17, 722.
(b) Widman, O. Berichte 1909, 42, 4216.
(c) Stoermer, R.; Fincke, H. Berichte 1909, 42, 3115.
(d) Stoermer, R.; Gaus, O. Berichte 1912, 45, 3104.
(e) Pang, X.-B.; Zhao, L.-B.; Zhou, D.-G.; He, P.-Y.; An, Z.; Ni, J.-X.; Yan, R.-L. Org. Biomol. Chem. 2017, 15, 6318.
[15] (a) Keneford, J. R.; Simpson, J. С. Е. J. Chem. Soc. 1947, 917.
(b) Keneford, J. R.; Simpson, J. С. Е. J. Chem. Soc. 1948, 354.
(c) Schofield, K.; Theobald, R. S. J. Chem. Soc. 1949, 2404.
[16] (a) Hu, E.; Kunz, R. K.; Rumfelt, S.; Andrews, K. L.; Li, C.; Hitchcock, S. A.; Lindstrom, M.; Treanor, J. Bioorg. Med. Chem. Lett. 2012, 22, 6938.
(b) Yang, H.; Murigi, F. N.; Wang, Z.-J.; Li, J.-F.; Jin, H.-J.; Tu, Z.-D. Bioorg. Med. Chem. Lett. 2015, 25, 919.
(c) Hu, E.; Ma, J.; Biorn, C.; Lester-Zeiner, D.; Cho, R.; Rumfelt, S.; Kunz, R. K.; Nixey, T.; Michelsen, K.; Miller, S. J. Med. Chem. 2012, 55, 4776.
[17] Hennequin, L. F.; Thomas, A. P.; Johnstone, C.; Stokes, E. S. E.; Plé, P. A.; Lohmann, J. J. M.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Curwen, J. O.; Kendrew, J.; Brempt, C. L. J. Med. Chem. 1999, 42, 5369.
[18] (a) Senadi, G. C.; Gore, B. S.; Hu, W. P.; Wang, J. J. Org. Lett. 2016, 18, 2890.
(b) Khaligh, N. G.; Mihankhah, T.; Johan, M. R.; Ching, J. J. Monatsh. Chem. 2018, 149, 1083.
[19] (a) Neber, P. W.; Knoller, G.; Herrst, K.; Trissler, A. Liebigs Ann. Chem. 1929, 471, 113.
(b) Alford, E. J.; Schofield, K. J. Chem. Soc. 1952, 2102.
[20] Shvartsberg, M. S.; Ivanchikova, I. D. Tetrahedron Lett. 2000, 41, 771.
[21] Stefańska, B.; Arciemiuk, M.; Bontemps-Gracz, M. M.; Dzieduszycka, M.; Kupiec, A.; Martellib, S.; Borowskia, E. Bioorg. Med. Chem. 2003, 11, 561.
[22] (a) Gomaa, M. A. M. Tetrahedron Lett. 2003, 44, 3493.
(b) Ryu, C. K.; Lee, J. Y. Bioorg. Med. Chem. Lett. 2006, 16, 1850.
(c) Lambert, D. J.; Parikh, N.; Messham, S. J.; Edwards, G.; Truong, H. V.; Dempster, N. M.; Drew, M. G. B.; Nahar, L.; Sarker, S. D.; Ismail, F. M. D. Tetrahedron Lett. 2015, 56, 6980.
[23] (a) Barber, H. J.; Washbourn, K.; Wragg, W. R.; Lunt, E. J. Chem. Soc. 1961, 2828.
(b) Barber, H. J.; Lunt, E. J. Chem. Soc., Perkin Trans. 11968, 9, 1156.
[24] Al-Awadi, N. A.; Elnagdi, M. H.; Ibrahim, Y. A.; Kaul, K.; Kumar, A. Tetrahedron 2001, 57, 1609.
[25] Liu, X.-F.; Chang, H.-F.; Schmiesing, R. J.; Wesolowski, S. S.; Knappenberger, K. S.; Arriza, J. L.; Chapdelaine, M. J. Bioorg. Med. Chem. 2010, 18, 8374.
[26] Awad, E. D.; El-Abadelah, M. M.; Matar, S.; Zihlif, M. A.; Naffa, R. G.; AlMomani, E. Q. Molecules 2012, 17, 227.
[27] Alhambra, C.; Becker, C.; Blake, T.; Chang, A. H.; Damewood, J. R.; Daniels, T.; Dembofsky, B. T.; Gurley, D. A.; Hall, J. E.; Herzog, K. J.; Horchler, C. L.; Ohnmacht, C. J.; Schmiesing, R. J.; Dudley, A.; Ribadeneira, M. D.; Knappenberger, K. S.; Maciag, C.; Stein, M. M.; Chopra, M.; Liu, X.-F.; Christian, E. P.; Arriza, J. L.; Chapdelaine, M. J. Bioorg. Med. Chem. 2011, 19, 2927.
[28] Vinogradova, O. V.; Balova, I. A.; Popik, V. V. J. Org. Chem. 2011, 76, 6937.
[29] Bräse, S.; Dahmen, S.; Heuts, J. Tetrahedron Lett. 1999, 40, 6201.
[30] (a) Kimball, D. В.; Hayes, A. G.; Haley, M. M. Org. Lett. 2000, 2, 3825.
(b) Kimball, D. В.; Weakly, T. J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 1572.
(c) Kimball, D. В.; Weakly, T. J. R.; Herges, R.; Hayes, A. G.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 13463.
(d) Kimball, D. В.; Weakly, T. J. R.; Haley, M. M. J. Org. Chem. 2002, 67, 6395.
(e) Kimball, D. В.; Haley, M. M. Angew. Chem., Int. Ed. 2002, 41, 3338.
(f) Young, B. S.; Marshall, J. L.; MacDonald, E.; Vonnegut, C. L.; Haley, M. M. Chem. Commun. 2012, 48, 5166.
(g) Young, B. S.; Köhler, F.; Herges, R.; Haley, M. M. J. Org. Chem. 2011, 76, 8483.
[31] (a) Ross, S. D.; Kuntz, I. J. Am. Chem. Soc. 1952, 74, 1297.
(b) Corbett, J. F.; Holt, P. F. J. Chem. Soc. 1960, 3646.
[32] Hou, Z.; Fujiwara, Y.; Taniguchi, H. J. Org. Chem. 1988, 53, 311.
[33] Dehghanpour, S.; Afshariazar, F.; Assoud, J. Polyhedron 2012, 35, 69.
[34] (a) Braithwaite, R. S. W.; Holt, P. F.; Hughes, A. N. J. Chem. Soc. 1958, 4073.
(b) Barton, J. W.; Rowe, D. J. Tetrahedron Lett. 1983, 24, 299.
(c) Barton, J. W.; Sheperd, M. K. Tetrahedron Lett. 1984, 25, 4967.
(d) Benin, V.; Kaszynski, P. J. Org. Chem. 2000, 65, 6388.
[35] (a) Bjorsvik, H.-R.; Gonzalez, R. R.; Liguori, L. J. Org. Chem. 2004, 69, 7720.
(b) Elumalai, V.; Bjorsvik, H.-R. ChemistrySelect 2018, 3, 2092.
[36] Corbett, J. F.; Holt, P. F. J. Chem. Soc. 1961, 3695.
[37] Caronna, T.; Fontana, F.; Mele, A.; Sora, I. N.; Panzeri, W.; Viganò, L. Synthesis 2008, 413.
[38] Takeda, Y.; Okazaki, M.; Maruoka, Y.; Minakata, S. Beilstein J. Org. Chem. 2015, 11, 9.
[39] Lee, D. S.; Chatterjee, T; Ban, J.; Rhee, H.; Cho, E. J. Chemis-trySelect 2018, 3, 2092.
[40] (a) Holt, P. F.; Went, C. W. J. Chem. Soc. 1963, 4099.
(b) Al-Mousawi, S. M.; El-Apasery, M. A. Molecules 2012, 17, 6547.
(c) Al-Awadi, N. A.; Ibrahim, Y. A.; Elnagdi, M. H.; Adam, A. Y.; John, E. J. Anal. Appl. Pyrol. 2017, 124, 602.
[41] Wimmer, R.; Müller, N. Monatsh. Chem. 1998, 129, 1161.
[42] Sharma, M.; Maheshwari, A.; Bindal, N. J. Heterocycl. Chem. 2013, 50, 116.
[43] Swenton, J. S.; Ikeler, T, J.; Williams, B. H. J. Am. Chem. Soc. 1970, 92, 3103.
[44] Yu, Y.; Singh, S. K.; Liu, A.; Li, T.-K.; Liu, L. F.; LaVoie, E. J. Bioorg. Med. Chem. 2003, 11, 1475.
[45] (a) Parrino, B.; Carbone, A.; Muscarella, M.; Spanò, V.; Montalbano, A.; Barraja, P.; Salvador, A.; Vedaldi, D.; Cirrincione, G.; Diana, P. J. Med. Chem. 2014, 57, 9495.
(b) Shen, Y.; Zhang, Q.; Qian, X.; Yang, Y. Anal. Chem. 2015, 87, 1274.
[46] Hasegawa, K.; Kimura, N.; Arai, S.; Nishida, A. J. Org. Chem. 2008, 73, 6363.
[47] Zhu, C.; Yamane, M. Tetrahedron 2011, 67, 4933.
[48] Ball, C. J.; Gilmore, J.; Willis, M. C. Angew. Chem., Int. Ed. 2012, 51, 5718.
[49] Kumar, A.; Tiwari, D. K.; Sridhard, B.; Likhar, P. R. Org. Bio-mol. Chem. 2018, 16, 4840.
[50] Zhao, S.; Yu, R.; Chen, W.; Liu, M.; Wu, H. Org. Lett. 2015, 17, 2828.
[51] Jurberg, I. D.; Gagosz, F. J. Organomet. Chem. 2011, 696, 37.
[52] Gogoi, P.; Gogoi, S. R.; Devi, N.; Barman, P. Synth. Commun. 2014, 44, 1142.
[53] Zhang, G.; Miao, J.; Zhao, Y.; Ge, H. Angew. Chem., Int. Ed. 2012, 51, 8318.
[54] Lan, C.; Tian, Z.; Liang, X.; Gao, M.; Liu, W.; An, Y.; Fu, W.; Jiao, G.; Xiao, J.; Xu, B. Adv. Synth. Catal. 2017, 359, 3735.
[55] Fan, Z.; Wu, K.; Xing, L.; Yao, Q.; Zhang, A. Chem. Commun. 2014, 50, 1682.
[56] Reddy, B. V. S.; Reddy, C. R.; Reddy, M. R.; Yarlagadda, S.; Sridhar, B. Org. Lett. 2015, 17, 3730.
[57] Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. Chem.-Eur. J. 2013, 19, 6239.
[58] Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
[59] (a) Muralirajan, K. Cheng, C.-H. Chem.-Eur. J. 2013, 19, 6198.
(b) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2016, 55, 1844.
[60] Xing, L.; Fan, Z.; Hou, C.; Yong, G.; Zhang, A. Adv. Synth. Catal. 2014, 356, 972.
[61] Rajkumar, S.; Savarimuthu, S. A.; Kumaran, R. S.; Nagarajad, C. M.; Gandhi, T. Chem. Commun. 2016, 52, 2509.
[62] Mayakrishnan, S.; Arun, Y.; Balachandran, C.; Emi, N.; Muralidharana, D.; Perumal, P. T. Org. Biomol. Chem. 2016, 14, 1958.
[63] (a) Shi, J.; Zhou, J.; Yan, Y.; Jia, J.; Liu, X.; Song, H.; Xu, H. E.; Yi, W. Chem. Commun. 2015, 51, 668.
(b) Lv, H.; Xu, W. L.; Lin, K.; Shi, J.; Yi, W. Eur. J. Org. Chem. 2016, 5637.
[64] Son, J.-Y.; Kim, S.; Jeon, W. H.; Lee, P. H. Org. Lett. 2015, 46, 2518.
[65] Sharma, S.; Han, S. H.; Han, S.; Ji, W.; Oh, J.; Lee, S.-Y.; Oh, J. S.; Jung, Y. H.; Kim, I. S. Org. Lett. 2015, 46, 2852.
[66] Sun, P.; Wu, Y.; Huang, Y.; Wu, X.; Xu, J.; Yao, H.; Lin, A. Org. Chem. Front. 2016, 3, 91.
[67] Song, C.; Yang, C.; Zhang, F.; Wang, J.; Zhu, J. Org. Lett. 2016, 18, 4510.
[68] Li, P.; Xu, X.; Chen, J.; Yao, H.; Lin, A. Org. Chem. Front. 2018, 5, 1777.
[69] Chen, X.; Zheng, G.; Song, G.; Li, X. Adv. Synth. Catal. 2018, 360, 2836.
[70] Yang, C.; Song, F.; Chen, J.; Huang. Y. Adv. Synth. Catal. 2017, 359, 3496.
[71] (a) Kiselyov, A. S. Tetrahedron Lett. 1995, 36, 1383.
(b) Kiselyov, A. S.; Dominguez, C. Tetrahedron Lett. 1999, 40, 5111.
[72] (a) Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. Tetrahedron 2008, 64, 9705.
(b) Süennemann, H. W.; Banwell, M. G.; de Meijere, A. Chem.-Eur. J. 2008, 14, 7236.
(c) Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. Tetrahedron Lett. 2008, 49, 4513.
(d) Alajarín, M.; Cabrera, J.; Pastor, A.; Sánchez-Andrada, P.; Bautista, D. J. Org. Chem. 2008, 73, 963.
[73] Alajarin, M.; Bonillo, B.; Marin-Luna, M.; Vidal, A.; Orenes, R.-A. J. Org. Chem. 2009, 74, 3558.
[74] Chen, D.; Yang, C.; Xie, Y.; Ding, J. Heterocycles 2009, 77, 273.
[75] Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Bioorg. Med. Chem. 2013, 21, 2843.
[76] Kandimalla, S. R.; Sabitha, G. RSC Adv. 2016, 6, 67086.
[77] Jiao, J.; Xu, L.; Zheng, W.; Xiong, P.; Hu, M.-L.; Tang, R.-Y. Synthesis 2017, 49, 1839.
[78] Suh, S.-E.; Barros, S. A.; Chenoweth, D. M. Chem. Sci. 2015, 6, 5128.
[79] Shu, W.-M.; Ma, J.-R.; Zheng, K.-L.; Wu, A.-X. Org. Lett. 2016, 18, 196.
[80] Guo, S.; Zhai, J.; Fan, X. Org. Biomol. Chem. 2017, 15, 1521.
/
〈 |
|
〉 |