研究简报

金属钠催化下一元酯的高效无溶剂胺化反应

  • 沈涛 ,
  • 欧阳博 ,
  • 周少东 ,
  • 钱超 ,
  • 陈新志
展开
  • a 浙江大学浙江省化工高效制造技术重点实验室 杭州 310027;
    b 浙江花园生物高科有限公司 东阳 322121

收稿日期: 2018-08-07

  修回日期: 2018-09-28

  网络出版日期: 2018-10-26

基金资助

国家自然科学基金(No.21476194)和国家重点研发计划(No.2016YFB0301800)资助项目.

Efficient, Solvent-Free Aminolysis of Monoesters Catalyzed by Sodium

  • Shen Tao ,
  • Ouyang Bo ,
  • Zhou Shaodong ,
  • Qian Chao ,
  • Chen Xinzhi
Expand
  • a Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027;
    b Zhejiang Garden Biochemical High-Tech Co., LTD, Dongyang 322121

Received date: 2018-08-07

  Revised date: 2018-09-28

  Online published: 2018-10-26

Supported by

Project supported by the National Natural Science Foundation of China (No. 21476194) and the National Key Research and Development Program of China (No. 2016YFB0301800).

摘要

开发了一种金属钠催化下一元酯的高效无溶剂胺化反应方法.通过金属钠与氨基钠对一元酯的胺化反应的对比实验,发现金属钠和液氨原位生成的氨基负离子对反应活性更高,提出了可能的反应机理.该方法反应速度快,反应条件温和,适合多种一元酯的胺化.

关键词: 一元酯; 胺化; ; 氨基钠

本文引用格式

沈涛 , 欧阳博 , 周少东 , 钱超 , 陈新志 . 金属钠催化下一元酯的高效无溶剂胺化反应[J]. 有机化学, 2019 , 39(3) : 873 -877 . DOI: 10.6023/cjoc201808006

Abstract

An efficient, solvent-free procedure using sodium as catalyst for the aminolysis of monoesters is reported. A detailed comparison of catalysts between sodium and sodium amide was made. It was found that the fresh sodium amide by in-situ synthesis of sodium with ammonia was more active than the indirectly adding sodium amide. As compared to the previously reported approaches, the procedure given in this work is much faster and performed under mild conditions. Furthermore, this procedure is applied successfully for the aminolysis of other monoesters.

参考文献

[1] Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827.
[2] Dong, H.; Hou, M. Chin. J. Org. Chem. 2017, 37, 267(in Chinese). (董浩, 侯梅芳, 有机化学, 2017, 37, 267.)
[3] (a) Xie, L. Y.; Li, Y. J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K. J.; Cao, Z.; He, W. M. Green Chem. 2017, 19, 5642.
(b) Xie, L. Y.; Qu, J.; Peng, S.; Liu, K. J.; Wang, Z.; Ding, M. H.; Wang, Y.; Cao, Z.; He, W. M. Green Chem. 2018, 20, 760.
(c) Tan, J.; Guo, Y.; Zeng, F.; Chen, G.; Xie, L.; He, W. Chin. J. Org. Chem. 2018, 38, 1740(in Chinese). (谭家希, 郭也, 曾飞, 陈观荣, 谢龙勇, 何卫民, 有机化学, 2018, 38, 1740.)
(d) Xie, L. Y.; Peng, S.; Lu, L. H.; Hu, J.; Bao, W. H.; Zeng, F.; Tang, Z.; Xu, X.; He, W. M. ACS Sustainable Chem. Eng. 2018, 6, 7989.
[4] (a) Zhang, Q.; Wang, X.; Xiao, Q.; Yin, D. Chin. J. Org. Chem. 2017, 37, 954(in Chinese). (张青扬, 汪小涧, 肖琼, 尹大力, 有机化学, 2017, 37, 954.)
(b) Liu, K. J.; Jiang, S.; Lu, L. H.; Tang, L. L.; Tang, S. S.; Tang, H. S.; Tang, Z.; He, W. M.; Xu, X. Green Chem. 2018, 20, 3038.
(c) Wu, C.; Lu, L. H.; Peng, A. Z.; Jia, G. K.; Peng, C.; Cao, Z.; Tang, Z.; He, W. M.; Xu, X. Green Chem. 2018, 20, 3683.
(d) Liu, T.; Peng, Y.; Wang, Y.; Yong, J.; Wang, X. Chin. J. Org. Chem. 2018, 38, 969(in Chinese). (刘天宝, 彭艳芬, 王雅洁, 雍家远, 汪新, 有机化学, 2018, 38, 969.)
[5] Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
[6] Joullie, M. M.; Lassen, K. M. ARKIVOC 2010, 189.
[7] Reimann, S.; Danke, V.; Beiner, M.; Binder, W. H. J. Polym. Sci., Part A:Polym. Chem. 2017, 55, 3736.
[8] Afon'kin, A. A.; Kostrikin, L. M.; Shumeiko, A. E.; Popov, A. F.; Matveev, A. A.; Matvienko, V. N.; Zabudkin, A. F. Russ. Chem. Bull. 2012, 61, 2149.
[9] Baldessari, A.; Mangone, C. P. J. Mol. Catal. B:Enzym. 2001, 11, 335.
[10] Sauer, D. R.; Kalvin, D.; Phelan, K. M. Org. Lett. 2003, 5, 4721.
[11] Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2008, 49, 2661.
[12] Sharghi, H.; Sarvari, M. H. Synth. Commun. 2003, 33, 207.
[13] Ganguly, N. C.; Roy, S.; Mondal, P. Tetrahedron Lett. 2012, 53, 1413.
[14] Allam, B. K.; Singh, K. N. Tetrahedron Lett. 2011, 52, 5851.
[15] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 12429.
[16] Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Milstein, D. Organometallics 2004, 23, 4026.
[17] Chan, W. K.; Ho, C. M.; Wong, M. K.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 14796.
[18] Hogberg, T.; Strom, P.; Ebner, M.; Ramsby, S. J. Org. Chem. 1987, 52, 2033.
[19] Arora, R.; Paul, S.; Gupta, R. Can. J. Chem. 2005, 83, 1137.
[20] Burkhardt, I.; Lauterbach, L.; Brock, N. L.; Dickschat, J. S. Org. Biomol. Chem. 2017, 15, 4432.
[21] Lin, J. J.; Wu, J. J.; Ho, Y. S. J. Appl. Polym. Sci. 2001, 82, 435.
[22] Yang, K. W.; Cannon, J. G.; Rose, J. G. Tetrahedron Lett. 1970, 1791.
[23] Xie, L. Y.; Peng, S.; Liu, F.; Chen, G. R.; Xia, W.; Yu, X.; Li, W. F.; Cao, Z.; He, W. M. Org. Chem. Front. 2018, 5, 2604.
[24] Yu, X.; Zhou, F.; Chen, J.; Xiao, W. Acta Chim. Sinca 2017, 75, 86(in Chinese). (余晓叶, 周帆, 陈加荣, 肖文精, 化学学报, 2017, 75, 86.)
[25] Zhang, J.; Niu, L.; Li, Y.; Liu, S.; Jiang, L. Chin. J. Org. Chem. 2018, 38, 1842(in Chinese). (张俊辉, 牛李智, 李映, 刘思, 姜林, 有机化学, 2018, 38, 1842.)
[26] Greenlee, K. W.; Henne, A. L. Inorg. Synth. 1946, 2, 128.
[27] Willard, M. L.; Maresh, C. J. Am. Chem. Soc. 1940, 62, 1253.
[28] Kuzma, P. C.; Brown, L. E.; Harris, T. M. J. Org. Chem. 1984, 49, 2015.
[29] Philbrook, G. E. J. Org. Chem. 1954, 19, 623.
[30] Behun, J. D.; Levine, R. J. Am. Chem. Soc. 1959, 81, 5157.
[31] Ohmura, R.; Takahata, M.; Togo, H. Tetrahedron Lett. 2010, 51, 4378.
[32] Chinchilla, R.; Dodsworth, D. J.; Najera, C.; Soriano, J. M. Tetrahedron Lett. 2003, 44, 463.
[33] Ma, X. Y.; Lu, M. J. Chem. Res. 2011, 480.

文章导航

/