含氟咪唑啉型有机催化剂在不对称Aldol反应中的研究
收稿日期: 2018-09-21
修回日期: 2018-12-05
网络出版日期: 2018-12-07
基金资助
国家自然科学基金基(Nos.21572128,21672139)及中国科学院上海有机化学研究所氟重点实验室开放基金资助项目.
Trifluoromethylated-Imidazolines as Efficient Organocatalyst for Asymmetric Aldol Reaction of Hydroxyacetone with Aldehydes
Received date: 2018-09-21
Revised date: 2018-12-05
Online published: 2018-12-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21572128, 21672139) and the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science.
手性1,2-二醇骨架是天然产物或生物活性分子构建过程中的重要骨架,而α-羟基酮参与的不对称Aldol缩合反应是实现手性1,2-二醇骨架的重要手段.设计并合成了含三氟甲基的咪唑啉型化合物,并将其应用于羟基丙酮和醛的不对称Aodol缩合反应.研究结果表明,当采用含氟咪唑啉(2R,4S)-4-苄基-1,2-二甲基-2-三氟甲基咪唑啉(1a)作为不对称Aldol反应的催化剂时,能够以产率高达96%、最高ee值达到99%及dr值达到15∶1的效率高效构建一系列顺式1,2-二醇产物.同时,我们也初步探讨了氟-氢键在不对称催化反应中的作用.
关键词: 不对称Aldol反应; 有机催化; 咪唑啉; 三氟甲基; 合成
解晓娟 , 张忠 , 赵华欣 , 万文 , 郝健 . 含氟咪唑啉型有机催化剂在不对称Aldol反应中的研究[J]. 有机化学, 2019 , 39(1) : 117 -121 . DOI: 10.6023/cjoc201809026
Aldol reaction of hydroxyacetone is an all-purpose route to construct the 1,2-diol building blocks for the synthesis of multifarious natural products and biological active molecules. In this work, a new series of trifluoromethylated-imidazoline organocatalysts have been designed and synthesized. It is found that the trifluoromethylated chiral organocatalyst (2R,4S)-4-benzyl-1,2-dimethyl-2-(trifluoromethyl) imidazolidine (1a) has proved to be very efficient for the direct asymmetric aldol reaction of α-hydroxyketones with aldehydes to build the syn-1,2-diol building blocks. Among the synthesized syn-aldol products, a good yield (up to 96%) and high stereoselectivity (up to dr=15:1, 99% ee) could be obtained. The F—H bonding derived from trifluoromethyl group was proposed to play an important role in the stabilization of the transition state.
Key words: asymmetric aldol reaction; organocatalysis; imidazoline; trifluoromethyl; synthesis
[1] For reviews, see:(a) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65.
(b) Mahrwald, R. Modern Aldol Reactions, Wiley-VCH, Weinheim, Germany, 2004, Vols. 1~2.
(c) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
(d) Houk, K. N.; List, B. Acc. Chem. Res. 2004, 37, 487.
(e) List, B. Chem. Rev. 2007, 107, 5413.
[2] (a) List, B.; Lerner, R. A. Barbas. C. F. J. Am. Chem. Soc. 2000, 122, 2395.
(b) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386.
[3] For reviews, see:(a) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983.
(b) Northrup, A. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2004, 43, 2152.
(c) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752.
(d) Cordova, A.; Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W. W. Chem. Commun. 2005, 3586.
(e) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Angew. Chem., Int. Ed. 2005, 44, 3055.
(f) Enders, D.; Grondal, C. Angew. Chem., Int. Ed. 2005, 44, 1210.
(g) Suri, J. T.; Ramachary, D. B.; Barbas. C. F. Org. Lett. 2005, 7, 1383.
(h) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas. C. F. J. Am. Chem. Soc. 2006, 128, 734.
(i) Mukherjee, S.; Yang, J. W.; Hoffman, S.; List, B. Chem. Rev. 2007, 107, 5471.
(j) Li, J.-Y.; Luo, S.-Z.; Cheng, J.-P. J. Org. Chem. 2009, 74, 1747.
(k) Vellalath, S.; Romo, D. Angew. Chem., Int. Ed. 2016, 55, 13934.
(l) Frias, M.; Cieslik, W.; Fraile, A.; Rosado-Abon, A.; Garido-Castro, A. F.; Yuste, F.; Aleman, J. Chem.-Eur. J. 2018, 24, 10906.
[4] For examples of syn-aldol reactions of ketones, see:(a) Ramasastry, S. V.; Zhang, H.; Tanaka, F.; Barbas. C. F. J. Am. Chem. Soc. 2007, 129, 288.
(b) Luo, S.; Xu, H.; Li, J.; Zhang, L.; Cheng, J.-P. J. Am. Chem. Soc. 2007, 129, 3074.
(c) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.; Tanaka, F.; Barbas. C. F. Angew. Chem., Int. Ed. 2007, 46, 5572.
(d) Xu, X.-Y.; Wang, Y.-Z.; Gong, L.-Z. Org. Lett. 2007, 9, 4247.
(e) Utsumi, N.; Imai, M.; Tanaka, F.; Ramasastry, S. S. V.; Barbas. C. F. Org. Lett. 2007, 9, 3445.
(f) Ramasastry, S. S. V.; Albertshofer, K.; Utsumi, N.; Barbas. C. F. Org. Lett. 2008, 10, 1621.
(g) Zhu, M.-K.; Xu, X.-Y.; Gong, L.-Z. Adv. Synth. Catal. 2008, 350, 1390.
(h) Luo, S.; Xu, H.; Zhang, L.; Li, J.; Cheng, J.-P. Org. Lett. 2008, 10, 653.
[5] (a) Purser, S.; Moore, P. R.; Swallow S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Begue, J. P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine, Wiley, Hoboken, 2008.
(c) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, John Wiley & Sons, Chichester, 2009.
(d) Wan, W.; Ma, G.; Li, J.; Chen, Y.; Hu, Q.; Li, M.; Jiang, H.; Deng, H.; Hao, J. Chem. Commun. 2016, 52, 1598.
(e) Wang, J.; Sanchez-Rosello, M.; Acena J.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(f) Lee, K. A.; Silverio, D. L.; Torker, S.; Robbins, D. W.; Haeffner, F.; Mei, F. W.; Hoveyda, A. H. Nat. Chem. 2016, 8, 768.
(g) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese). (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.)
(h) Xu, X.; Chen, H.; He, J.; Xu, H. Chin. J. Chem. 2017, 35, 1665.
(i) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese). (惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2017, 37, 3060.)
[6] (a) O'Hagan, D.; Bilton, C.; Howard, J. A. K.; Knight, L.; Tozer, D. J. J. Chem. Soc., Perkin Trans. 2 2000, 605.
(b) Briggs, C. R. S.; O'Hagan, D.; Howard, J. A. K.; Yufit, D. S. J. Fluorine Chem. 2003, 119, 9.
(c) Gooseman, N. E. J.; O'Hagan, D.; Slawin, A. M. Z.; Teale, A. M.; Tozer, D. J.; Young, R. J. Chem. Commun. 2006, 3190.
(d) Gooseman, N. E. J.; O'Hagan, D.; Peach, M. G.; Slawin, A. M. Z.; Tozer, D. J.; Young, R. J. Angew. Chem., Int. Ed. 2007, 46, 5904.
(e) MacMillan, D. W. C. Nature 2008, 455.
(f) Cahard, D.; Bizet, V. Chem. Soc. Rev. 2014, 43, 135.
[7] (a) Sparr, C.; Schweizer, W. B.; Senn, H. M.; Gilmou, R. Angew. Chem., Int. Ed. 2009, 48, 3065.
(b) Diocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis. T. J. Am. Chem. Soc. 2009, 131, 10872.
[8] For reviews, see:(a) List, B.; Shabat, D.; Barbas. C. F.; Lerner, R. A. Chem.-Eur. J. 1999, 4, 881.
(b) Yoshikawa, N.; Kumagai, N.; Matsunaga, S.; Moll, G.; Ohshima, T.; Suzuki, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 2466.
(c) Trost, B. M.; Ito, H.; Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367.
(d) Kumagai, N.; Matsunaga, S.; Kinoshita, T.; Harada, S.; Okada, S.; Sakamoto, S.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 2169.
[9] Ahrendt, K. A.; Borths, C. J.; MacMillan. D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
[10] (a) Sarka, D.; Harman, K.; Ghosh, S.; Headley, D. Tetrahedron:Asymmetry 2011, 22, 1051.
(b) Czarnecki, P.; Plutecka, A.; Gawronski, J.; Kacprzak, K. Green Chem. 2011, 13, 1280.
(c) Paradowska, J.; Pasternak, M.; Gut, B.; Gryzlo, B.; Mlynarski, J. J. Org. Chem. 2012, 77, 173.
/
〈 |
|
〉 |