研究论文

壳聚糖固载氧化亚铜催化C-O和C-N偶联反应

  • 钱存卫 ,
  • 朱文倩 ,
  • 刘俊龙 ,
  • 王雪敏 ,
  • 仇立干
展开
  • 盐城师范学院化学与环境工程学院 盐城 224051

收稿日期: 2018-12-02

  修回日期: 2019-04-04

  网络出版日期: 2019-04-16

基金资助

Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 14JKD150009) and the Key Projects of Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (No. 201710324003Z).

Chitosan@Cu2O as A Facile, Efficient and Reusable Catalyst for Ligand-Free C-O and C-N Coupling

  • Qian Cunwei ,
  • Zhu Wenqian ,
  • Liu Junlong ,
  • Wang Xuemin ,
  • Qiu Ligan
Expand
  • School of Chemical and Environmental Engineering, Yancheng Teachers College, Yancheng 224051

Received date: 2018-12-02

  Revised date: 2019-04-04

  Online published: 2019-04-16

Supported by

Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 14JKD150009) and the Key Projects of Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (No. 201710324003Z).

摘要

制备了四种壳聚糖固载的铜盐催化剂,以这四种催化剂尝试催化C-O和C-N的偶联反应,实验结果显示,壳聚糖固载的氧化亚铜可以高效催化芳基卤代烃与酚及含氮杂环的偶联反应,且该方法的底物适应性广.实验结果还显示,该催化剂具有易回收、可重复利用的优点,且多次重复利用后该催化剂的催化活性未明显减弱.

本文引用格式

钱存卫 , 朱文倩 , 刘俊龙 , 王雪敏 , 仇立干 . 壳聚糖固载氧化亚铜催化C-O和C-N偶联反应[J]. 有机化学, 2019 , 39(6) : 1695 -1703 . DOI: 10.6023/cjoc201812003

Abstract

The coupling reactions of phenols and nitrogen hetereocycles with aryl halide were catalyzed by a highly active, readily available and easily recoverable heterogeneous Cu catalyst which was prepared by simply stirring an suspension of chitosan in solvent with copper compound. The result showed that chitosan@Cu2O catalyst catalyzed the coupling reactions of aryl halides with phenols and nitrogen hetereocycles to readily give the corresponding products in moderate to excellent yields. The highly active catalyst can be reused many times without losing its catalytic activity.

参考文献

[1] For reviews, see:
(a) Lindley, J. Tetrahedron 1984, 40, 1433.
(b) Theil, F. Angew. Chem. Int. Ed. 1999, 38, 2345.
(c) Sawyer, J. S. Tetrahedron 2000, 56, 5045.
(d) Thomas, A. W.; Ley, S. V. Angew. Chem. Int. Ed. 2003, 42, 5400.
(e) Kunz, K.; Scholz, U.; Ganzer, D. Synlett. 2003, 15, 2428.
(f) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337.
[2] For selected examples of medicinally important diaryl ethers, see:
(a) Jung, M. E.; Rohloff, J. C. J. Org. Chem. 1985, 50, 4909.
(b) Singh, S. B.; Pettit, G. R. J. Org. Chem. 1990, 55, 2797.
(c) Deshpande, V. E.; Gohkhale, N. J. Tetrahedron Lett. 1992, 33, 4213.
(d) Evans, D. A.; DeViries, K. M. In Glycopeptide Antibiotics, Drugs and the Pharmaceutical Sciences, Ed.:Nagarajan, R., Marcel Decker, New York, 1994, p. 63.
(e) Zenitani, S.; Tashiro, S.; Shindo, K.; Nagai, K.; Suzuki, K.; Imoto, M.; Gerfelin, A. J. Antibiot 2003, 56, 617.
(f) Cristau, P.; Vors, J. P.; Zhu, J. Tetrahedron 2003, 59, 7859.
(g) Qian, C. W.; Pang, Y.; Fang, D.; Zong, Q. Chin. J. Pestic. Sci. 2013, 15, 44 (in Chinese).
[3] (a) Ullmann, F. Dtsch, Ber. Chem. Ges 1904, 37, 853.
(b) Ullmann, F. Dtsch, Ber. Chem. Ges. 1903, 36, 2382.
[4] (a) Mann, G.; Hartwig, J. F. Tetrahedron Lett. 1997, 46, 8005.
(b) Palucki, M.; Wolfe, J. P.; Bukhwald, S. L. J. Am. Chem. Soc. 1996, 118, 10333.
(c) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109.
(d) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369.
(e) Mann, G.; Hartwig, J. F. J. Org. Chem. 1997, 62, 5413.
(f) Palucki, M. J.; Wolfe, P.; Buchwald, S. J. Am. Chem. Soc. 119, 3395.
(g) Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787.
[5] Marcoux, J. F.; Doye, S.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539.
[6] Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799.
[7] Chen, Y. J.; Chen, H. H. Org. Lett. 2006, 8, 5609.
[8] Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.-Eur. J. 2006, 12, 3636.
[9] Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.
[10] Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315.
[11] Qian, C.; Zong, Q.; Fang, D. Chin. J. Chem. 2012, 30, 199.
[12] Qian, C.; Xu, S.; Fang, D.; Zong, Q. Chin. J. Chem. 2012, 30, 1881.
[13] Buck, E.; Song, Z.; Tschaen, D.; Dormer, P. G.; Volante, R. P.; Reider, P. J. Org. Lett. 2002, 4, 1623.
[14] Lv, X.; Bao, W. J. Org. Chem. 2007, 72, 3863.
[15] Qian, C.; Qin, L.; Zong, Q.; Wu, L.; Fang, D. Bull. Korean Chem. Soc. 2013, 34, 3915.
[16] Qian, C.; Lv, W.; Zong, Q.; Wang, M.; Fang, D. Chin. Chem. Lett. 2014, 25, 337.
[17] Gawande, M. B.; Goswami, A.; Felpin, F.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R. R.; Varma, S. Chem. Rev. 2016, 116, 3722.
[18] Zhao, H.; Xu, J.; Wang, T. Appl. Catal. A:Gen. 2015, 502, 188.
[19] Honraedt, A.; Le Callonnec, F.; Le Grognec, E.; Fernandez, V.; Felpin, F.-X. J. Org. Chem. 2013, 78, 4604.
[20] Mondal, P.; Sinha, A.; Salam, N.; Roy, A. S.; Jana, N. R.; Islam, S. M. RSC Adv. 2013, 3, 5615.
[21] Hajipour, A. R.; Dordahan, F.; Rafiee, F.; Mahdavi, M. Appl. Organomet. Chem. 2014, 28, 809.
[22] Nador, F.; Volpe, M. A.; Alonso, F.; Radivoy, G. Tetrahedron 2014, 70, 6082.
[23] Baig, R. B. N.; Varma, R. S. Chem. Commun. 2012, 48, 2582.
[24] Sharma, R. K.; Gaur, R.; Yadav, M.; Rathi, A. K.; Pechousek, J.; Petr, M.; Zboril, R.; Gawande, M. B. ChemCatChem 2015, 7, 3495.
[25] Gopiraman, M.; Ganesh Babu, S.; Khatri, Z.; Kai, W.; Kim, Y. A.; Endo, M.; Karvembu, R.; Kim, I. S. Carbon 2013, 62, 135.
[26] (a) Carlo, G. Di; Curulli, A.; R. Toro, G.; Bianchini, C.; De Caro, T.; Padeletti, G.; Zane, D.; Ingo, G. M. Langmuir 2012, 28, 5471.
(b) Yang, Y.-H.; Cui, J.-H.; Zheng, M.-T.; Hu, C.-F.; Tan, S.-Z.; Xiao, Y.; Yang, Q.; Liu, Y.-L. Chem. Commun. 2012, 48, 380.
[27] Hardy, J. J. E.; Hubert, S.; Macquarrie, D. J.; Wilson, A. J. Green Chem. 2004, 6, 53.
[28] Kadib, A. E.; Molvinger, K.; Bousmina M.; Brunel, D. Org. Lett. 2010, 12, 948.
[29] Makhubela, B. C. E.; Jardine, A.; Smith, G. S. Green Chem. 2012, 14, 338.
[30] Baig, R. B. N.; Varma, R. S. Green Chem. 2013, 15, 1834.
[31] Shen, C.; Xu, J.; Yu, W.; Zhang P. Green Chem. 2014, 16, 3007.
[32] Collins, G.; Schmidt, M.; O'Dwyer, C.; McGlacken, G.; Holmes, J. ACS Catal. 2014, 4, 3105.
[33] Marcoux, J.; Doye, S.; Buchwald S. J. Am. Chem. Soc. 1997, 119, 10539.
[34] Takashi, M.; Fumitoshi, Y.; Masanori, S.; Kenji, K.; Hiroaki, S.; Masami, S.; Tsutomu, F. Synlett 2009, 2457.
[35] Li, Z.; Meng, F.; Zhang, J.; Xie, J.; Dai, B. Org. Biomol. Chem. 2016, 14, 10861.
[36] Janíkova, K.; Jedinak, L.; Volna, T.; Canka, P. Tetrahedron 2018, 74(5):606.
[37] Kantam, M. L.; Venkanna, G. T.; Sridhar, C.; Sreedhar, B.; Choudary, B. M. J. Org. Chem. 2006, 71, 9522.
[38] Zhang, Z. J.; Mao, J. C.; Zhu, D.; Wu, F.; Chen, H. L.; Wan, B. S. Tetrahedron 2006, 62, 4435.
[39] Zhang, X.; Xia, A.; Chen, H.; Liu, Y. Org. Lett. 2017, 19(8), 2118.
[40] Yin, W.; Wang, C.; Huang, Y. Org. Lett. 2013, 15(8), 1850.
[41] Hosseini-Sarvari, M.; Razmi Z. RSC Adv. 2014, 4, 44105.
[42] Shelke, G. M.; Rao, V. K.; Jha, M.; Cameron, T. S.; Kumar, A. Synlett. 2015, 26(3), 404.

文章导航

/