研究简报

铯催化吲哚衍生物N-酰胺化反应制备吲哚-1-芳(烷)基甲酰胺化合物

  • 吴燕 ,
  • 王珊 ,
  • 张海玲 ,
  • 陈睿 ,
  • 何树华
展开
  • 长江师范学院化学化工学院 无机特种材料重庆市重点实验室 四川涪陵 408000

收稿日期: 2019-06-12

  修回日期: 2019-07-24

  网络出版日期: 2019-08-07

基金资助

重庆市基础前沿研究(No.Cstc2018jcyjAX0721)、长江师范学院青年人才成长计划(No.2018QNRC11)、重庆市教育委员会(No.KJQN201801404)资助项目.

Cesium-Catalyzed N-Carboxamidation of Indoles for Synthesis of Indole-1-carboxamides

  • Wu Yan ,
  • Wang Shan ,
  • Zhang Hailing ,
  • Chen Rui ,
  • He Shuhua
Expand
  • Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Sichuan 408000

Received date: 2019-06-12

  Revised date: 2019-07-24

  Online published: 2019-08-07

Supported by

Project supported by the Basic and Frontier Research Project of Chongqing City (No. Cstc2018jcyjAX0721), the Youth Talent Growth Plan Project of Yangtze Normal University (No. 2018QNRC11), and the Education Commission of Chongqing City (No. KJQN201801404).

摘要

以5.0mol% CsOH·H2O作为催化剂,吲哚衍生物和芳(烷)基异氰酸酯发生N-酰胺化反应,以较高产率制备了一系列吲哚-1-芳(烷)基甲酰胺化合物.该方法对不同的吲哚衍生物和芳(烷)基异氰酸酯均具有较好的适用性,反应均能以较高的产率获得相应的目标产物.与已有方法相比,本方法具有反应条件温和、底物适用范围广、操作简便以及产率高等优点,为吲哚-1-芳(烷)基甲酰胺化合物的制备提供有效的路径.

本文引用格式

吴燕 , 王珊 , 张海玲 , 陈睿 , 何树华 . 铯催化吲哚衍生物N-酰胺化反应制备吲哚-1-芳(烷)基甲酰胺化合物[J]. 有机化学, 2019 , 39(12) : 3567 -3573 . DOI: 10.6023/cjoc201906012

Abstract

A protocol for the synthesis of a series of indole-1-carboxamides was reported via the N-arboxamidation of indole derivatives with aryl (alkyl) isocyanates catalyzed by 5.0 mol% cesium hydroxide monohydrate (CsOH·H2O). This method is suitable for different indole derivatives and aryl (alkyl) isocyanates, for giving corresponding products in excellent yields. Compared to the reported methods, this protocol has the advantages of mild reaction conditions, wild functional group tolerance, simple operation and excellent yields. An efficient route to indole-1-carboxamides is previded.

参考文献

[1] Patil, S. A.; Patil, R.; Miller, D. D. Future Med. Chem. 2012, 4, 2085.
[2] Hamid, H. A.; Ramli, A. N.; Yusoff, M. M. Front. Pharmacol. 2017, 8, 96.
[3] Demurtas, M.; Baldisserotto, A.; Lampronti, I.; Moi, D.; Balboni, G.; Pacifico, S.; Vertuani, S.; Onnis, V. Bioorg. Chem. 2019, 85, 568.
[4] Wu, S. W.; Yang, M. Q.; Xiao, Y. L. Chin. J. Org. Chem. 2018, 38, 2243(in Chinese). (吴世文, 杨盟权, 肖友利, 有机化学, 2018, 38, 2243.)
[5] Walsh, P. J.; Wang, Z.; Xu, X.; Liu, G.; Jiang, R.; Zheng, Z.; Mao, J.; Guan, H. Angew. Chem. 2019, 131, 1149.
[6] Lin, W.; Hu, X. X.; Wang, Y. Z.; Song, S.; Zhang, M. Y.; Shi, D. Q. Chin. J. Org. Chem. 2018, 38, 855(in Chinese). (林伟, 胡秀秀, 王雅珍, 宋帅, 张梦烨, 史达清, 有机化学, 2018, 38, 855.)
[7] Festa, A. A.; Zalte, R. R.; Golantsov, N. E.; Varlamov, A. V.; Van der Eycken, E. V. J. Org. Chem. 2018, 83, 9305.
[8] Cui, X.-F.; Ban, Z.-H.; Tian, W.-F.; Hu, F.-P.; Zhou, X.-Q.; Ma, H.-J.; Zhan, Z.-Z.; Huang, G.-S. Org. Biomol. Chem. 2019, 17, 240.
[9] Heckman, L. M.; He, Z.; Jamison, T. F. Org. Lett. 2018, 20, 3263.
[10] Liao, F. M.; Du, Y.; Zhou, F.; Zhou, J. Acta Chim. Sinica 2018, 76, 862(in Chinese). (廖富民, 杜溢, 周锋, 周剑, 化学学报, 2018, 76, 862.)
[11] Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.
[12] Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 10251.
[13] Heaner IV, W. L.; Gelbaum, C. S.; Gelbaum, L.; Pollet, P.; DuBay, W.; Butler, J. D.; Wells, G.; Liotta, C. L. RSC Adv. 2013, 3, 13232.
[14] Pelkey, E. T.; Gribble, G. W. Tetrahedron Lett. 1997, 38, 5603.
[15] Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195.
[16] Luo, H.; Zhao, L.; Leung, J.; Zhang, R.; Liu, Z.; Wang, X.; Wang, B.; Nie, Z.; Lei, T.; Li, X. Lancet 2016, 387, 2293.
[17] Holger, W.; Elke, L.; Matthias, E.; Rüdiger, S.; Corinna, S.; Annette, S.-M.; Alexander, P. US 08232312, 2012.
[18] Satyasheel, S.; Sangil, H.; Mirim, K.; Neeraj Kumar, M.; Jihye, P.; Jong Hwan, K.; Young Hoon, J.; Kim, I. S. Org. Biomol. Chem. 2014, 12, 1703
[19] Schipper, D. J.; Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6910.
[20] Chen, X.; Hu, X.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2016, 18, 192
[21] Ye, D.; Wang, J.; Zhang, X.; Zhou, Y.; Ding, X.; Feng, E.; Sun, H.; Liu, G.; Jiang, H.; Liu, H. Green Chem. 2009, 11, 1201.
[22] Zheng, J.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 3560.
[23] Reddy, C. R.; Yarlagadda, S.; Sridhar, B.; Reddy, B. V. S. Eur. J. Org. Chem. 2017, 2017, 5763.
[24] Macor, J. E.; Cuff, A.; Cornelius, L. Tetrahedron Lett. 1999, 40, 2733.
[25] Fan, W.-H.; Parikh, M. J.; Snyder, K. Tetrahedron Lett. 1995, 36, 6591.
[26] Boger, D. L.; Patel, M. J. Org. Chem. 1987, 52, 3934.
[27] Macor, J. E.; Cuff, A.; Cornelius, L. Tetrahedron Lett. 1999, 40, 2733.
[28] Ye, S.; Ding, Q.; Wang, Z.; Zhouand, H.; Wu, J. Org. Biomol. Chem. 2008, 6, 4406.
[29] Ye, D.; Wang, J.; Zhang, X.; Zhou, Y.; Ding, X.; Feng, E.; Sun, H.; Liu, G.; Jiang, H.; Liu, H. Green Chem. 2009, 11, 1201.
[30] Wei, Z.; Jun, W.; Shaomin, F.; Dongen, L.; Huanfeng, J.; Wei, Z. Org. Lett. 2015, 46, 1349.
[31] Reddy, B. V. S.; Dey, S. K.; Yadav, J. S.; Sridhar, B. Tetrahedron Lett. 2012, 53, 3676.
[32] Papadopoulos, E. P.; Bedrosian, S. B. J. Org. Chem. 1968, 33, 4551.
[33] Chen, J.; Chen, S.; Xu, X.; Tang, Z.; Au, C. T.; Qiu, R. J. Org. Chem. 2016, 81, 3246.
[34] Zhang, W.; Liu, M.; Wu, H.; Ding, J.; Cheng, J. Tetrahedron Lett. 2008, 49, 5336.
[35] Chen, J.; Tang, Z.; Qiu, R.; He, Y.; Wang, X.; Li, N.; Yi, H.; Au, C.-T.; Yin, S.-F.; Xu, X. Org. Lett. 2015, 17, 2162.
[36] Ferreira, N. L.; Azeredo, J. B.; Fiorentin, B. L.; Braga, A. L. Eur. J. Org. Chem. 2015, 46, 5070.
[37] Richter, J. M.; Whitefield, B. W.; Maimone, T. J.; Lin, D. W.; Castroviejo, M. P.; Baran, P. S. J. Am. Chem. Soc. 2007, 129, 12857.
[38] Satyasheel, S.; Sangil, H.; Mirim, K.; Neeraj Kumar, M.; Jihye, P.; Youngmi, S.; Young Hoon, J.; Kim, I. S. Org. Biomol. Chem. 2014, 12, 1703.
文章导航

/