研究论文

深共融溶剂中合成2,4-二取代喹啉衍生物

  • 陈国庆 ,
  • 谢宗波 ,
  • 刘一帅 ,
  • 孟佳 ,
  • 乐长高
展开
  • a 东华理工大学核资源与环境国家重点实验室 南昌 330013;
    b 东华理工大学应用化学系 南昌 330013

收稿日期: 2019-05-19

  修回日期: 2019-07-20

  网络出版日期: 2019-09-05

基金资助

国家自然科学基金(Nos.21462001,11765002)、江西省科技计划(Nos.20161BCB24006,20181BAB203019)资助项目.

Synthesis of 2,4-Disubstituted Quinolines in Deep Eutectic Solvents

  • Chen Guoqing ,
  • Xie Zongbo ,
  • Liu Yishuai ,
  • Meng Jia ,
  • Le Zhanggao
Expand
  • a State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013;
    b Department of Applied Chemistry, East China University of Technology, Nanchang 330013

Received date: 2019-05-19

  Revised date: 2019-07-20

  Online published: 2019-09-05

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21462001, 11765002), and the Science and Technology Projects of Jiangxi Province (Nos. 20161BCB24006, 20181BAB203019).

摘要

在氯化胆碱和氯化锌组成的深共融溶剂中,以2-氨基苯乙酮和芳香炔烃为原料,通过环化偶联反应,合成了一系列2,4-二取代喹啉衍生物;当n(氯化胆碱):n(氯化锌)=1:2,反应温度为80℃时,反应3 h即获得高达98%的产率.该方法无需额外添加催化剂,而且反应条件温和、操作简单、底物范围较广泛.

本文引用格式

陈国庆 , 谢宗波 , 刘一帅 , 孟佳 , 乐长高 . 深共融溶剂中合成2,4-二取代喹啉衍生物[J]. 有机化学, 2020 , 40(1) : 156 -161 . DOI: 10.6023/cjoc201905040

Abstract

In the deep eutectic solvent which composed of choline chloride and zinc chloride, a series of 2,4-disubstituted quinolines were synthesized via cyclization coupling of 2-aminoacetophenone and aromatic alkyne. When the molar ratio of choline chloride and zinc chloride was 1:2, the yield up to 98% was achieved at 80℃ for 3 h. The method does not need additional catalyst, and has the advantages of mild reaction conditions, simple operation and a wide range of substrates.

参考文献

[1] Jenekhe, S. A.; Lu, L.; Alam, M. M. Macromolecules 2001, 34, 7315.
[2] Vaitilingam, B.; Nayyar, A.; Palde, P. B.; Monga, V.; Jain, R.; Kaur, S.; Singh, P. P. Bioorg. Med. Chem. 2004, 12, 4179.
[3] Denmark, S. E.; Venkatraman, S. J. Org. Chem. 2006, 71, 1668.
[4] Kouznetsov, V. V.; Mendez, L. Y. V.; Gomez, C. M. M. Curr. Org. Chem. 2005, 9, 141.
[5] Ghassamipour, S.; Sardarian, A. R. Tetrahedron Lett. 2009, 50, 514.
[6] Sloop, J. C. J. Phys. Org. Chem. 2009, 22, 110.
[7] Yadav, J. S.; Rao, P. P.; Sreenu, D.; Rao, R. S.; Kumar, V. N.; Nagaiah, K.; Prasad, A. R. Tetrahedron Lett. 2005, 46, 7249.
[8] Shvekhgeimer, M. G. A. Chem. Heterocycl. Com. 2004, 40, 257.
[9] Wang, M. X.; Liu, Y.; Huang, Z. T. Tetrahedron Lett. 2001, 42, 2553.
[10] Zhan, X. Ph.D. Dissertation, Hunan University, Changsha, 2018 (in Chinese). (湛西, 博士论文, 湖南大学, 长沙, 2018.)
[11] Wang, Y.; Peng, C. L.; Liu, L. Y.; Zhao, J. J.; Su, L.; Zhu, Q. Tetrahedron Lett. 2009, 50, 2261.
[12] Cho, H. J.; Török, F.; Török, B. Green Chem. 2014, 16, 3623.
[13] Huang, Y. H.; Wang, S. R.; Wu, D. P.; Huang, P. Q. Org. Lett. 2019, 21, 1681.
[14] Zheng, W. P.; Yang, W. G.; Luo, D. P.; Min, L.; Wang, X. Y.; Hu, Y. F. Adv. Synth. Catal. 2019, 361, 1995.
[15] Li, L. H.; Niu, Z. J.; Liang, Y. M. Chem.-Eur. J. 2017, 23, 15300.
[16] Ye, J. L.; Zhu, Y. N.; Geng, H.; Huang, P. Q. Sci. China:Chem. 2018, 61, 687.
[17] Lu, Y.; Liang, M.; Jiang, G. F.; Xie, Z. B.; Le, Z. G. Fine Chem. 2018, 35, 1427(in Chinese). (卢粤, 梁萌, 姜国芳, 谢宗波, 乐长高, 精细化工, 2018, 35, 1427.)
[18] Liu, P.; Hao, J. W.; Mo, L. P.; Zhang, Z. H. RSC Adv. 2015, 5, 48675.
[19] Zhang, Q. H.; Vigier, K. D. O.; Royer, S.; Jerome, F. Chem. Soc. Rev. 2012, 41, 7108.
[20] Yadav, U. N.; Shankarling, G. S. J. Mol. Liq. 2014, 195, 188.
[21] Chen, Z. Z.; Zhu, W.; Zheng, Z. B.; Zou, X. Z. J. Fluorine Chem. 2010, 131, 340.
[22] Hu, H. C.; Liu, Y. H.; Li, B. L.; Cui, Z. S.; Zhang, Z. H. RSC Adv. 2015, 5, 7720.
[23] Ma, C. T.; Liu, P.; Wu, W.; Zhang, Z. H. J. Mol. Liq. 2017, 242, 606.
[24] Gadilohar, B. L.; Kumbhar, H. S.; Shankarling, G. S. Ind. Eng. Chem. Res. 2014, 53, 19010.
[25] Wang, P.; Ma, F. P.; Zhang, Z. H. J. Mol. Liq. 2014, 198, 259.
[26] Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K. Chem. Eur. J. 2004, 10. 3769.
[27] Carriazo, D.; Gutiérrez, M. C.; Ferrer, M. L.; Del, M. F. Chem. Mater. 2010, 22, 2711.
[28] Ai, F.; Xie, Z. B.; Jiang, G. F.; Ji, J. J.; Le, Z. G. Chin. J. Org. Chem. 2018, 38, 2174(in Chinese). (艾锋, 谢宗波, 姜国芳, 季久健, 乐长高, 有机化学, 2018, 38, 2174.)
[29] Abbott, A. P.; Capper, G.; Davies, D. L.; Kenzie, K. J.; Obi, S. U. J. Chem. Eng. Data 2006, 51, 1280.
[30] Maugeri, Z.; Leitner, W.; María, P. D. Tetrahedron Lett. 2012, 53, 6968.
[31] Wang, A. L.; Zheng, X. L.; Zhao, Z. Z.; Li, Z. P.; Zheng, X. F. Prog. Chem. 2014, 26, 784(in Chinese). (王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿, 化学进展, 2014, 26, 784.)
[32] Zhong, M. B.; Sun, S.; Cheng, J.; Shao, Y. J. Org. Chem. 2016, 81, 10825.
[33] Ren, X. X.; Han, S. J.; Gao, X. Y.; Li, J. Y.; Zou, D. P.; Wu, Y. J.; Wu, Y. S. Tetrahedron Lett. 2018, 59, 1065.
文章导航

/