研究论文

微波辐射下磷酸改性铌酸催化的香豆素修饰吡唑并[3,4-b]吡啶衍生物的高效合成

  • 林伟 ,
  • 庄苍伟 ,
  • 胡秀秀 ,
  • 杨凤丽
展开
  • 江苏理工学院化学与环境工程学院 江苏常州 213001

收稿日期: 2019-07-19

  修回日期: 2019-08-25

  网络出版日期: 2019-10-25

基金资助

国家自然科学基金(No.21502074)、江苏省青蓝工程和江苏省研究生实践创新计划(No.SJCX19_0766)资助项目.

Efficient Synthesis of Coumarin-Fused Pyrazolo[3,4-b]pyridine Derivatives Catalyzed by Niobic Acid Modified with Phosphoric Acid under Microwave Irradiation

  • Lin Wei ,
  • Zhuang Cangwei ,
  • Hu Xiuxiu ,
  • Yang Fengli
Expand
  • School of Chemistry and Environmental Engineering, Jiangsu Techology of University, Changzhou, Jiangsu 213001

Received date: 2019-07-19

  Revised date: 2019-08-25

  Online published: 2019-10-25

Supported by

Project supported by the National Natural Science Foundation of China (No. 21502074), the Qing Lan Project of Jiangsu Province and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX19_0766).

摘要

香豆素和吡唑并[3,4-b]吡啶骨架广泛存在于具有生物活性的天然化合物中,在药物化学中也被广泛用作药物核心单元,具有极其重要的作用.以磷酸改性铌酸作为催化剂,通过微波辐射下醛、香豆素衍生物、5-氨基吡唑的三组分反应一锅法高产率地合成一系列香豆素修饰的吡唑并[3,4-b]吡啶衍生物.该反应一步完成,具有催化剂和溶剂对环境友好,操作简单等优点.产物的结构经红外光谱、核磁共振谱及高分辨质谱予以确定.

本文引用格式

林伟 , 庄苍伟 , 胡秀秀 , 杨凤丽 . 微波辐射下磷酸改性铌酸催化的香豆素修饰吡唑并[3,4-b]吡啶衍生物的高效合成[J]. 有机化学, 2020 , 40(2) : 408 -416 . DOI: 10.6023/cjoc201907026

Abstract

Coumarin and pyrazolo[3,4-b]pyridine are structurally essential elements in biologically active natural compounds and are extremely important in medicinal chemistry by serving as key pharmacophores in drug discovery. In this article, the efficient synthesis of coumarin-fused pyrazolo[3,4-b]pyridine via three-component domino reaction of aldehydes, coumarin derivative and 5-aminopyrazole in one step catalyzed by niobic acid modified with phosphoric acid under microwave irradiation has been achieved. The one-pot procedure, eco-friendly catalyst and solvent as well as simple operation are the key features of this method. The structures of the products were identified by IR, NMR, and HRMS spectra.

参考文献

[1] El-Borai, M. A.; Rizk, H. F.; Beltagy, D. M.; El-Deeb, I. Y. Eur. J Med. Chem. 2013, 66, 415.
[2] De Mello, H.; Echevarria, A.; Bernardino, A. M.; CantoCavalheiro, M.; Leon, L. L. J. Med. Chem. 2004, 47, 5427.
[3] (a) Lin, R.; Connolly, P. J.; Lu, Y.; Chiu, G.; Li, S.; Yu, Y.; Huang, S.; Li, X.; Emanuel, S. L.; Middleton, S. A.; Gruninger, R. H.; Adams, M.; Fuentes-Pesquera A. R.; Greenberger, L. M. Bioorg. Med. Chem. Lett. 2007, 17, 4297.
(b) Revesz, L.; Blum, E.; Padova, F. E. D.; Buhl, T.; Feifel, R.; Gram, H.; Hiestand, P.; Manning, U.; Neumann, U.; Rucklin, G. Bioorg. Med. Chem. Lett. 2006, 16, 262.
[4] (a) Parker, W. B. Chem. Rev. 2009, 109, 2880.
(b) Miliutina, M.; Janke, J.; Hassan, S.; Zaib, S.; Iqbal, J. Lecka, J.; Sévigny, J.; Villinger, A.; Friedrich, A.; Lochbrunner, S.; Langer, P. Org. Biomol. Chem. 2018, 16, 717.
[5] (a) Ghosh, A.; Khan, A. T. Tetrahedron Lett. 2014, 55, 2006.
(b) Babu, P. A.; Narasu, M. L.; Srinivas, K. ARKIVOC 2007, ii, 247.
(c) Trujillo, J. I.; Kiefer, J. R.; Huang, W.; Thorarensen, A.; Xing, L.; Caspers, N. L.; Day, J. E.; Mathis, K. J.; Kretzmer, K. K.; Reitz, B. A.; Weinberg, R. A.; Stegeman, R. A.; Wrightstone, A.; Christine, L.; Compton, R.; Li, X. Bioorg. Med. Chem. Lett. 2009, 19, 908.
(d) Svetlik, J.; Veizerova, L.; Mayer, T. U.; Catarinella, M. Bioorg. Med. Chem. Lett. 2010, 20, 4073.
(e) Chioua, M.; Samadi, A.; Soriano, E.; Lozach, O.; Meijer, L.; Marco-Contelles, J. Bioorg. Med. Chem. Lett. 2009, 19, 4566.
[6] (a) Luo, K. W.; Sun, J. G.; Chan, J. W.; Yang, L.; Wu, S. H.; Fung, K. P.; Liu, F. Y. Chemotherapy 2011, 57, 449.
(b) Bhinder, C. K.; Kaur, A. Int. J. Pharm. Res. Bio-Sci. 2014, 3, 560.
(c) Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Eur. J. Med. Chem. 2016, 119, 141.
[7] (a) Poole, S. K.; Poole, C. F. Analyst 1994, 119, 113.
(b) Riveiro, M. E.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Curr. Med. Chem. 2010, 17, 1325.
[8] (a) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.; Bartus, H. R. J. Med. Chem. 1993, 36, 4131.
(b) Spino, C.; Dodier, M. Bioorg. Med. Chem. Lett. 1998, 8, 3475.
(c) Kostova, I.; Mojzis, J. Future HIV Ther. 2007, 1, 315.
[9] (a) Shin, E.; Choi, K. M.; Yoo, H. S.; Lee, C. K.; Hwang, B. Y.; Lee, M. K. Biol. Pharm. Bull. 2010, 33, 1610.
(b) Keri, R. S.; Sasidhar, B. S.; Nagaraja, B. M.; Santos, M. A. Eur. J. Med. Chem. 2015, 100, 257.
[10] (a) Piller, N. Br. J. Exp. Pathol. 1975, 56, 554.
(b) Bansal, Y.; Sethi, P.; Bansal, G. Med. Chem. Res. 2013, 22, 3049.
[11] Whang, W. K.; Park, H. S.; Ham, I.; Oh, M.; Namkoong, H.; Kim, H. K.; Hwang, D. W.; Hur, S. Y.; Kim, T. E.; Park, Y. G. Exp. Mol. Med. 2005, 37, 436.
[12] Rosselli, S.; Maggio, A. M.; Faraone, N.; Spadaro, V.; Morris-Natschke, S. L.; Bastow, K. F.; Lee, K. H.; Bruno, M. Nat. Prod. Commun. 2009, 4, 1701.
[13] Crichton, E. G.; Waterman, P. G. Phytochemistry 1978, 17, 1783.
[14] (a) Baek, N. I.; Ahn, E. M.; Kim, H. Y.; Park, Y. D. Arch. Pharm. Res. 2000, 23, 467.
(b) Teng, M. C.; Lin, H.; Ko, F. N.; Wu, T. S. Huang, T. F. Naunyn-Schmiedeberg's Arch. Pharmacol. 1994, 349, 202.
(c) Fort, D.; Rao, K.; Jolad, S.; Luo, J.; Carlson, T.; King, S. Phytomedicine 2000, 6, 465.
[15] (a) Gallo, J. M. R.; Teixeim, S.; Sehuchardt, U. Appl. Catal. A 2006, 311, 199.
(b) Prasetyoko, D.; Ramli, Z.; Endud, S. Mater. Chem. Phys. 2005, 93(2~3), 443.
[16] Kurosaki, A.; Okuyama, T.; Okazaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 3541.
[17] (a) Lin, W.; Hu, X. X.; Song, S.; Cai, Q.; Wang, Y.; Shi, D. Q. Org. Biomol. Chem. 2017, 15, 7909.
(b) Liu, X. C.; Lin, W.; Wang, H. Y.; Huang, Z. B.; Shi, D. Q. J. Heterocycl. Chem. 2014, 51, 1036.
(c) Wu, J. R.; Luo, H.; Wang, T.; Sun, H, M.; Zhang, Q. Chai, Y. H.; Tetrahedron Lett. 2019, 75, 1052.
(d) Arumugam, N.; Almansour, A I.; Kumar, R, S.; Altaf, M.; Mahalingam, S. M.; Periyasami, G.; Menéndez, J. C.; Al-Aizari, A. J. M. A. Tetrahedron Lett. 2019, 60, 602.
(e) Yan, C. G.; Wang, Q. F.; Song, X. K.; Sun, J. J. Org. Chem. 2009, 74, 710.
(f) Evdokimov, N. M.; Kireev, A. S.; Yakovenko, A. A.; Yu, M.; Magedov, A. I. V.; Kornienko, A. J. Org. Chem. 2007, 72, 3433.
(g) Wang, J. X.; Lin, W.; Liu, H. T.; Hu, M. H.; Feng, X.; Huang, Z. B.; Shi, D. Q. Chin. J. Org. Chem. 2015, 35, 927(in Chinese). (王菊仙, 林伟, 刘洪涛, 胡明华, 冯贤, 黄志斌, 史达清, 有机化学, 2015, 35, 927.)
[18] (a) Gao, G.; Wang, P.; Liu, P.; Zhang, W. H.; Mo, L. P.; Zhang, Z. H. Chin. J. Org. Chem. 2018, 38, 846(in Chinese). (高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38, 846.)
(b) Lin, W.; Cai, Q.; Zheng, C. Z.; Zheng, Y. X.; Shi, D. Q. J. Org. Chem. 2017, 37, 2392(in Chinese). (林伟, 蔡琦, 郑纯智, 郑永祥, 史达清, 有机化学, 2017, 37, 2392.
[19] (a) Stout, D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223.
(b) Knoevenagel, E.; Fries, A. Ber. Dtsch. Chem. Ges. 1898, 31, 761.
(c) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 690.
(d) Zecher, W.; Kröhnke, F. Chem. Ber. 1961, 94, 698.
(e) Allais, C.; Liéby-Muller, F.; Rodriguez, J.; Constantieux, T. Eur. J. Org. Chem. 2013, 4131.
(f) Shi, Z.; Loh, T.-P. Angew. Chem., Int. Ed. 2013, 52, 8584.
(g) Wu, Q.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16, 1350.
(h) Wan, J. P.; Jing, Y. F.; Hu, C. F.; Sheng, S. R. J. Org. Chem. 2016, 81, 6826.
(i) Li, Y.; Wang, G. D.; Hao, G. F.; Wan, J. P. Tetrahedron Lett. 2019, 60, 219.
[20] Bogdal, D. J. Chem. Res., Synop. 1998, 8, 468.
[21] (a) Zhang, M.; Liu, P.; Liu, Y. H.; Shang, Z. R.; Hu, H. C.; Zhang, Z. H. RSC Adv. 2016, 6, 106160.
(b) Saikh, F.; De, R.; Ghosh, S. Tetrahedron Lett. 2014, 55, 6171.
(c) Jia, X. D.; Yu, L. L.; Huo, C. D.; Wang, Y. X.; Liu, J.; Wang, X. C. Tetrahedron Lett. 2014, 55, 264.
(d) Ko, K. Y.; Kim, J. Y. Tetrahedron Lett. 1999, 40, 3207.
(e) Shamim, T.; Monika, G.; Paul, S. J. Mol. Catal. A:Chem. 2009, 302, 15.
文章导航

/