综述与进展

二芳基脯氨醇衍生物催化的硝基烯参与的多组分不对称串联合成研究进展

  • 严丽君 ,
  • 徐菡 ,
  • 王艳 ,
  • 董建伟 ,
  • 王永超
展开
  • a 云南师范大学职业技术教育学院 昆明 650092;
    b 曲靖师范学院化学与环境科学学院 云南曲靖 655011

收稿日期: 2019-09-17

  修回日期: 2019-10-28

  网络出版日期: 2019-12-19

基金资助

云南省科技厅应用基础研究基金(Nos.2017FD073,2018FD016,2018FD081)、云南省教育厅科学研究基金(No.2017ZZX075)和云南地方高校应用基础研究基金(No.2017FH001-092)资助项目.

Advances in Multicomponent Asymmetric Cascade Synthesis Involving Nitroolefin Catalyzed by Diarylprolinol Derivatives

  • Yan Lijun ,
  • Xu Han ,
  • Wang Yan ,
  • Dong Jianwei ,
  • Wang Yongchao
Expand
  • a College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092;
    b College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011

Received date: 2019-09-17

  Revised date: 2019-10-28

  Online published: 2019-12-19

Supported by

Project supported by the Applied Basic Research Project of Yunnan Provincial Department of Science and Technology (Nos. 2017FD073, 2018FD016, 2018FD081), the Scientific Research Foundation of Yunnan Provincial Education Department (No. 2017ZZX075) and the Yunnan Local Colleges Applied Basic Research Project (No. 2017FH001-092).

摘要

硝基烯是一类重要的有机合成子,以硝基烯烃为原料,二芳基脯氨醇衍生物催化的多组分不对称串联反应是构建复杂手性化合物的重要方法,被广泛应用于有机合成和新药开发领域.根据构建的目标化合物类型,较全面地总结了基于二芳基脯氨醇衍生物催化、硝基烯为合成子的多组分不对称串联反应的合成研究,从反应的催化剂体系、反应机理、实验结果、反应优点、存在的问题和局限性等方面进行介绍,并对今后的发展做出展望.

本文引用格式

严丽君 , 徐菡 , 王艳 , 董建伟 , 王永超 . 二芳基脯氨醇衍生物催化的硝基烯参与的多组分不对称串联合成研究进展[J]. 有机化学, 2020 , 40(2) : 284 -299 . DOI: 10.6023/cjoc201909028

Abstract

Nitroolefin is an important class of organic synthons. The synthetic method of multicomponent asymmetric cascade reactions involving nitroolefin catalyzed by diarlyprolinol derivatives is quite important for the construction of complex chiral compounds. It is widely used in organic synthesis and new drugs development. In this paper, the multi-component asymmetric cascade synthesis involving nitroalkenes catalyzed by diarlyprolinol derivatives is comprehensively summarized based on the type of target compounds. In detail, the catalyst systems, reaction mechanisms, experimental results, reaction advantages, existing problems and limitations for this synthetic method are introduced respectively. The future development for this synthetic period is further evaluated as well.

参考文献

[1] (a) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
(b) Carlone, A.; Cabrera, S.; Marigo, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1101.
(c) Enders, D.; Grondal, C.; Huettl, M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570.
(d) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253.
(e) Yan, L. J.; Wang, Y. C. ChemistrySelect 2016, 1, 6948.
(f) Su, Y.; Bouma, M. J.; Alcaraz, L.; Stocks, M.; Furber, M.; Masson, G.; Zhu, J. Chem.-Eur. J. 2012, 18, 12624.
(g) Han, Z. Y.; Gong, L. Z. Prog. Chem. 2018, 30, 505(in Chinese). (韩志勇, 龚流柱, 化学进展, 2018, 30, 505.)
[2] (a) Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang, F.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 9124.
(b) Chi, Y.; Scroggins, S. T.; Fréchet, J. M. J. J. Am. Chem. Soc. 2008, 130, 6322.
(c) Enders, D.; Huettl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
(d) Blümel, M.; Chauhan, P.; Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 6012.
(e) Liao, X.; Jiang, Y.; Lai, S. L.; Liu, Y. G.; Wang, S. B.; Xiong, X. Q. Chin. J. Org. Chem. 2019, 39, 668(in Chinese). (廖旭, 蒋岩, 赖石林, 刘源岗, 王士斌, 熊兴泉, 有机化学, 2019, 39, 668.)
[3] (a) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.
(b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
(c) Jia, Z.-J.; Jiang, H.; Li, J.-L.; Gschwend, B.; Li, Q.-Z.; Yin, X.; Grouleff, J.; Chen, Y.-C.; Jørgensen, K. A. J. Am. Chem. Soc. 2011, 133, 5053.
(d) Zu, L.; Xie, H.; Li, H.; Wang, J.; Yu, X.; Wang, W. Chem.-Eur. J. 2008, 14, 6333.
[4] (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 1971, 10, 496.
(b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.
[5] Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 794.
[6] Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem., Int. Ed. 2005, 44, 4212.
[7] (a) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem., Int. Ed. 2009, 48, 3699.
(b) Silvi, M.; Chatterjee, I.; Liu, Y.; Melchiorre, P. Angew. Chem., Int. Ed. 2013, 52, 10780.
(c) Ma, A.; Ma, D. Org. Lett. 2010, 12, 3634.
(d) Johansen, T. K.; Gómez, C. V.; Bak, J. R.; Davis, R. L.; Jørgensen, K. A. Chem.-Eur. J. 2013, 19, 16518.
(e) Talavera, G.; Reyes, E.; Vicario, J. L.; Carrillo, L. Angew. Chem., Int. Ed. 2012, 51, 4104.
(f) Li, J. L.; Zhou, S. L.; Chen, P. Q.; Dong, L.; Liu, T. Y.; Chen, Y. C. Chem. Sci. 2012, 3, 1879.
[8] (a) Barrett, A. G.; Graboski, G. G. Chem. Rev. 1986, 86, 751.
(b) Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. 1985, 18, 284.
(c) Zimmer, R.; Reissig, H. U. Chem. Soc. Rev. 2014, 43, 2888.
[9] (a) Ballini, R.; Marcantoni, E.; Petrini, M. J. Org. Chem. 1992, 57, 1316.
(b) Rao, P. S.; Kurumurthy, C.; Veeraswamy, B.; Kumar, G. S.; Poornachandra, Y.; Kumar, C. G.; Vasamsetti, S. B.; Kotamraju, S.; Narsaiah, B. Eur. J. Med. Chem. 2014, 80, 184.
(c) Werner, K. M.; de los Santos, J. M.; Weinreb, S. M.; Shang, M. J. Org. Chem. 1999, 64, 4865.
(d) Zhang, W. S.; Xu, W. J.; Zhang, F.; Li, Y. Chin. J. Org. Chem. 2019, 39, 1277(in Chinese). (张文生, 许文静, 张斐, 李焱, 有机化学, 2019, 39, 1277.)
[10] (a) Simon, M. O.; Li, C. J. Chem. Soc. Rev. 2012, 41, 1415.
(b) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023.
(c) Wang, Y.-C.; Wang, J.-L.; Burgess, K. S.; Zhang, J.-W.; Zheng, Q.-M.; Pu, Y.-D.; Yan, L.-J.; Chen, X.-B. RSC Adv. 2018, 8, 5702.
(d) Sebahar, P. R.; Williams, R. M. J. Am. Chem. Soc. 2000, 122, 5666.
(e) Liao, F. M.; Du, Y.; Zhou, F.; Zhou, J. Acta Chim. Sinica 2018, 76, 862(in Chinese). (廖富民, 杜溢, 周锋, 周剑, 化学学报, 2018, 76, 862.)
[11] (a) Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li. X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. J. Med. Chem. 2013, 56, 5553.
(b) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.;Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.
(c) Kumari, G.; Modi, M.; Gupta, S. K.; Singh, R. K. Eur. J. Med. Chem. 2011, 46, 1181.
(d) Arun, Y.; Saranraj, K.; Balachandran, C.; Perumal, P. T. Eur. J. Med. Chem. 2014, 74, 50.
(e) Kathirvelan, D.; Haribabu, J.; Reddy, B. S. R.; Balachandran, C.; Duraipandiyan, V. Bioorg. Med. Chem. Lett. 2015, 25, 389.
[12] (a) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas III, C. F. ACS Catal. 2014, 4, 743.
(b) Tian, L.; Luo, Y. C.; Hu, X. Q.; Xu, P. F. Asian J. Org. Chem. 2016, 5, 580.
(c) Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 6607.
(d) Fang, X.; Wang, C.-J. Org. Biomol. Chem. 2018, 16, 2591.
[13] Jiang, K.; Jia, Z.-J.; Chen, S.; Wu, L.; Chen, Y.-C. Chem.-Eur. J. 2010, 16, 2852.
[14] Jiang, K.; Jia, Z.-J.; Yin, X.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 2766.
[15] Xie, X.; Peng, C.; He, G.; Leng, H. J.; Wang, B.; Huang, W.; Han, B. Chem. Commun. 2012, 48, 10487.
[16] Zhou, B.; Yang, Y.; Shi, J.; Luo, Z.; Li, Y. J. Org. Chem. 2013, 78, 2897.
[17] Li, Z.-L.; Liu, C.; Tan, R.; Tong, Z.-P.; Liu, Y.-K. Catalysts 2016, 6, 65.
[18] Chaudhari, P. D.; Hong, B. C.; Lee, G. H. Org. Lett. 2017, 19, 6112.
[19] (a) Rajapaksa, N. S.; McGowan, M. A.; Rienzo, M.; Jacobsen, E. N. Org. Lett. 2013, 15, 706.
(b) Granger, B. A.; Wang, Z.; Kaneda, K.; Fang, Z.; Martin, S. F. ACS Comb. Sci. 2013, 15, 379.
(c) Dounay, A. B.; Humphreys, P. G.; Overman, L. E.; Wrobleski, A. D. J. Am. Chem. Soc. 2008, 130, 5368.
(d) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
[20] Tan, Y.; Luan, H. L.; Lin, H.; Sun, X. W.; Yang, X. D.; Dong, H. Q.; Lin, G. Q. Chem. Commun. 2014, 50, 10027.
[21] Enders, D.; Wang, C.; Mukanova, M.; Greb, A. Chem. Commun. 2010, 46, 2447.
[22] (a) Karasu, S.; Bayram, Y.; Ozkan, K.; Sagdic, O. J. Food Meas. Charact. 2019, 13, 1515.
(b) Wu, X.; Yang, S.; Yu, H.; Ye, L.; Su, B.; Shao, Z. Biosci. Biotechnol. Biochem. 2019, 83, 1263.
[23] Enders, D.; Hüttl, M. R. M.; Raabe, G.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 267.
[24] Enders, D.; Hüttl, M. R. M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem., Int. Ed. 2007, 46, 467.
[25] Zhang, F.-L.; Xu, A.-W.; Gong, Y.-F.; Wei, M.-H.; Yang, X.-L. Chem.-Eur. J. 2009, 15, 6815.
[26] Enders, D.; Krüell, R.; Bettray, W. Synthesis 2010, 567.
[27] Rueping, M.; Haack, K. L.; Ieawsuwan, W.; Sunden, H.;Blanco, M.; Schoepke, F. R. Chem. Commun. 2011, 47, 3828.
[28] Jia, Y.; Mao, Z.; Wang, R. Tetrahedron:Asymmetry 2011, 22, 2018.
[29] Erdmann, N.; Philipps, A. R.; Atodiresei, I.; Enders, D. Adv. Synth. Catal. 2013, 355, 847.
[30] Philipps, A. R.; Fritze, L.; Erdmann, N.; Enders, D. Synthesis 2015, 47, 2377.
[31] (a) Simon-Levert, A.; Arrault, A.; Bontemps-Subielos N;Canal, C.; Banaigs, B. J. Nat. Prod. 2005, 68, 1412.
(b) Pratap, R.; Ram, V. J. Chem. Rev. 2014, 114, 10476.
(c) Tangdenpaisal, K.; Chuayboonsong, K.; Ruchirawat, S.; Ploypradith, P. J. Org. Chem. 2017, 82, 2672.
(d) Garrido, L.; Zubia, E.; Ortega, M. J.; Salva, J. J. Nat. Prod. 2002, 65, 1328.
[32] Kotame, P.; Hong, B. C.; Liao, J.-H. Tetrahedron Lett. 2009, 50, 704.
[33] Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H. Org. Lett. 2010, 12, 776.
[34] Kumar, M.; Chauhan, P.; Valkonen, A.; Rissanen, K.; Enders, D. Org. Lett. 2017, 19, 3025.
[35] Kumar, M.; Chauhan, P.; Bailey, S. J.; Jafari, E.; von Essen, C.; Rissanen, K.; Enders, D. Org. Lett. 2018, 20, 1232.
[36] (a) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149.
(b) Mengozzi, L.; Gualandi, A.; Cozzi, P. G. Chem. Sci. 2014, 5, 3915.
(c) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775.
(d) Eschenbrenner-Lux, V.; Küchler, P.; Ziegler, S.; Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53, 2134.
(e) Khashper, A.; Lubell, W. D. Org. Biomol. Chem. 2014, 12, 5052.
[37] (a) Hayashi, Y.; Gotoh, H.; Masui, R.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 4012.
(b) Han, B.; Li, J. L.; Ma, C.; Zhang, S. J.; Chen, Y. C. Angew. Chem., Int. Ed. 2008, 47, 9971.
(c) Han, B.; He, Z. Q.; Li, J. L.; Li, R.; Jiang, K.; Liu, T. Y.; Chen, Y. C. Angew. Chem., Int. Ed. 2009, 48, 5474.
[38] Wang, Y.; Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. J.; Xu, P.-F. Chem.-Eur. J. 2010, 16, 3922.
[39] Urushima, T.; Sakamoto, D.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12, 4588.
[40] Chawla, R.; Rai, A.; Singh, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2012, 53, 5323.
[41] Tan, Y.; Chen, Y. J.; Lin, H.; Luan, H. L.; Sun, X. W.; Yang, X. D.; Lin, G. Q. Chem. Commun. 2014, 50, 15913.
[42] (a) Kariba, R. M.; Houghton, P. J.; Yenesew, A. J. Nat. Prod. 2002, 65, 566.
(b) Hubbs, J. L.; Heathcock, C. H. Org. Lett. 1999, 1, 1315.
(c) Padwa, A.; Flick, A. C.; Lee, H. I. Org. Lett. 2005, 7, 2925.
(d) Zhou, J.; Magomedov, N. A. J. Org. Chem. 2007, 72, 3808.
(e) Wöfling, J.; Frank, É.; Schneider, G.; Bes, M. T.; Tietze, L. F. Synlett 1998, 1205.
(f) Mernyák, E.; Schneider, G.; Herbst-Irmer, R.; Kubas, M.; Wölfing, J. Steroids 2006, 71, 558.
[43] Rai, A.; Singh, A. K.; Singh, S.; Yadav, L. D. S. Synlett 2011, 335.
[44] Rai, A.; Singh, A. K.; Singh, P.; Yadav, L. D. S. Tetrahedron Lett. 2011, 52, 1354.
[45] Jensen, K. L.; Dickmeiss, G.; Donslund, B. S.; Poulsen, P. H.; Jørgensen, K. A. Org. Lett. 2011, 13, 3678.
[46] (a) Yeung, K.-S.; Paterson, I. Chem. Rev. 2005, 105, 4237.
(b) Nising, C. F.;Brase, S. Chem. Soc. Rev. 2012, 41, 988.
(c) Clarke, P. A., Santos S. Eur. J. Org. Chem. 2006, 2045.
(d) Larrosa, I.; Romea, P.; Urpí, F. Tetrahedron 2008, 64, 2683.
(e) Xiao, Y. Y.; Wang, Y. M.; Zhou, Z. H. Chin. J. Org. Chem. 2019, 39, 2203(in Chinese). (肖园园, 王有名, 周正洪, 有机化学, 2019, 39, 2203.)
[47] Ishikawa, H.; Sawano, S.; Yasui, Y.; Shibata, Y.; Hayashi, Y. Angew. Chem., Int. Ed. 2011, 50, 3774.
[48] Han, B.; Xie, X.; Huang, W.; Li, X.; Yang, L.; Peng, C. Adv. Synth. Catal. 2014, 356, 3676.
[49] (a) Okpekon, T.; Millot, M.; Champy, P.; Gleye, C.; Yolou, S.; Bories, C.; Loiseau, P.; Laurens, A.; Hocquemiller, R. Nat. Prod. Res. 2009, 23, 909.
(b) Seiser, T.; Cramer, N. Angew. Chem., Int. Ed. 2010, 49, 10163.
(c) Kim, S. H.; Kwon, S. H.; Park, S. H.; Lee, J. K.; Bang, H. S.; Nam, S. J.; Kwon, H. C.; Shin, J.; Oh, D. C. Org. Lett. 2013, 15, 1834.
(d) Yang, Y.; Philips, D.; Pan, S. J. Org. Chem. 2011, 76, 1902.
[50] Li, X.; Yang, L.; Peng, C.; Xie, X.; Leng, H.-J.; Wang, B.; Tang, Z.-W.; He, G.; Ouyang, L.; Huang, W.; Han, B. Chem. Commun. 2013, 49, 8692.
[51] Dochain, S.; Vetica, F.; Puttreddy, R.; Rissanen, K.; Enders, D. Angew. Chem. 2016, 128, 16387.
[52] (a) Gao, C.; Han, L.; Zheng, D.; Jin, H.; Gai, C.; Wang, J.; Zhang, H.; Zhang, L.; Fu, H. J. Nat. Prod. 2015, 78, 630.
(b) Lee, S. H.; Tanaka, T.; Nonaka, G. I.; Nishioka, I. J. Nat. Prod. 2004, 67, 1018.
(c) Vila, R.; Mundina, M.; Muschietti, L.; Priestap, H. A.; Bandoni, A. L.; Adzet, T.; Cañigueral, S. Phytochemistry 1997, 46,1127.
[53] (a) Nagata, H.; Inagaki, Y.; Tanaka, M.; Ojima, M.; Kataoka, K.; Kuboniwa, M.; Nishida, N.; Shimizu, K.; Osawa, K. J. Periodontol. 2008, 79, 1378.
(b) Kashiwada, Y.; Nonaka, G. I.; Nishioka, I.; Chang, J. J.; Lee, K. H. J. Nat. Prod. 1992, 55, 1033.
[54] (a) De Boggiatto, M. V.; De Heluani, C. S.; De Fenik, I. J.; Catalan, C. A. J. Org. Chem. 1987, 52, 1505.
(b) Wei, G. L.; Rosazza, J. P. Tetrahedron Lett. 1990, 31, 2833.
(c) Peters, R.; Fischer, D. F. Angew. Chem., Int. Ed. 2006, 45, 5736.
[55] Xia, A.-B.; Pan, G.-J.; Wu, C.; Liu, X.-L.; Zhang, X.-L.; Li, Z.-B.; Du, X.-H.; Xu, D.-Q. Adv. Synth. Catal. 2016, 358, 3155.
[56] (a) Cabrera, S.; Aleman, J.; Bolze, P.; Bertelsen, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2008, 47, 121.
(b) Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129, 7498.
(c) Varga, S.; Jakab, G.; Drahos, L.; Holczbauer, T.; Czugler, M.; Soós, T. Org. Lett. 2011, 13, 5416.
[57] (a) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416.
(b) Lathrop, S. P.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628.
(c) Scroggins, S. T.; Chi, Y.; Fréchet, J. M. Angew. Chem., Int. Ed. 2010, 49, 2393.
(d) Wang, C.; Han, Z. Y.; Luo, H. W.; Gong, L. Z. Org. Lett. 2010, 12, 2266.
[58] Enders, D.; Schmid, B.; Erdmann, N.; Raabe, G. Synthesis 2010, 2271.
[59] Mao, Z.; Jia, Y.; Xu, Z.; Wang, R. Adv. Synth. Catal. 2012, 354, 1401.
[60] Han, B.; Huang, W.; Ren, W.; He, G.; Wang, J. H.; Peng, C. Adv. Synth. Catal. 2015, 357, 561.
[61] Raja, A.; Hong, B. C.; Liao, J. H.; Lee, G. H. Org. Lett. 2016, 18, 1760.
[62] (a) S Hamama, W.; G El-Gohary, H.; Kuhnert, N.; H Zoorob, H. Curr. Org. Chem. 2012, 16, 373.
(b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
(c) Brune, K. Acute Pain 1997, 1, 33.
[63] (a) Yoshida, H.; Yanai, H.; Namiki, Y.; Fukatsu-Sasaki, K.; Furutani, N.; Tada, N. CNS Drug Rev. 2006, 12, 9.
(b) Hadi, V.; Koh, Y. H.; Sanchez, T. W.; Barrios, D.; Neamati, N.; Jung, K. W. Bioorg. Med. Chem. Lett. 2010, 20, 6854.
(c) Chande, M. S.; Barve, P. A.; Suryanarayan, V. J. Heterocycl. Chem. 2007, 44, 49.
[64] Li, J. H.; Cui, Z. H.; Du, D. M. Org. Chem. Front. 2016, 3, 1087.
文章导航

/