综述与进展

有机多孔聚合物非均相催化可见光诱导有机转化

  • 徐子悦 ,
  • 罗驿 ,
  • 王辉 ,
  • 张丹维 ,
  • 黎占亭
展开
  • 复旦大学化学系 上海 200438

收稿日期: 2020-03-31

  修回日期: 2020-04-22

  网络出版日期: 2020-04-30

基金资助

国家自然科学基金(Nos.21890732,21890730,21921003)资助项目.

Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations

  • Xu Zi-Yue ,
  • Luo Yi ,
  • Wang Hui ,
  • Zhang Dan-Wei ,
  • Li Zhan-Ting
Expand
  • Department of Chemistry, Fudan University, Shanghai 200438

Received date: 2020-03-31

  Revised date: 2020-04-22

  Online published: 2020-04-30

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21890732, 21890730, 21921003).

摘要

综述多孔有机聚合物作为非均相催化剂在可见光诱导的有机转化研究中的应用进展.多孔有机聚合物由共轭分子单体聚合形成,具有易于合成和表征、结构稳定、种类多样和易于修饰等特点.多孔有机聚合物具有刚性的共轭骨架和较大的比表面积,孔径可通过单体长度调整,在不同溶剂中都具有极低的溶解性,易于回收和循环使用,因此是发展非均相催化体系的理想材料.通过把光敏基团并入到其骨架中,多孔有机聚合物可作为非均相催化剂,在可见光诱导下实现不同类型的有机化学转化.通过后修饰还可以把光敏剂引入到骨架连接臂上,进一步扩展其在可见光诱导下的非均相催化有机转化.多孔有机聚合物催化剂可以通过过滤和离心等手段快速回收以实现循环使用.可见光诱导和非均相催化结合在一起,使得这类催化材料具有绿色和可持续化学特征.

本文引用格式

徐子悦 , 罗驿 , 王辉 , 张丹维 , 黎占亭 . 有机多孔聚合物非均相催化可见光诱导有机转化[J]. 有机化学, 2020 , 40(11) : 3777 -3793 . DOI: 10.6023/cjoc202003070

Abstract

The recent applications of porous organic polymers (POPs) as heterogeneous catalysts for visible light-induced organic transformations are summarized. POPs are constructed from conjugated organic monomers, having the features of convenient synthesis and characterization, high stability for quick recovery and reuse, structural diversity as well as high modifiability. POPs possess rigid conjugated frameworks, relatively large surface areas, tunable porosity and typically insoluble in water or organic solvents, and thus ideal platforms for the development of heterogeneous catalysts. Through incorporating conjugated sensitizer units into the backbones or attaching the sensitizers to the backbone linkers, POPs can be developed as efficient heterogeneous photocatalysts for visible light-induced organic transformations. Due to their high stability and insolubility, POP catalysts can be easily recovered through filtration or centrifugation and recycled. POP-based photocatalysis combines visible light utility and catalyst recycling and thus represents a green and sustainable technique.

参考文献

[1] Cole-Hamilton, D. J.; Tooze, R. P. In Catalyst Separation, Recovery and Recycling, Springer, Dordrecht, 2006, pp. 1~8.
[2] Heterogeneous Catalysis:Fundamentals and Applications, Ed.:Ross, J. R. H., Elsevier, Amsterdam, 2012, p. 222.
[3] (a) Wang, Z.; Chen, G.; Ding, K. Chem. Rev. 2009, 109, 322.
(b) Fechete, I.; Wang, Y.; Vedrine, J. C. Catal. Today 2012, 189, 2.
(c) Thomas, J. M. Top. Catal. 2014, 57, 1115.
(d) Sun, Z.; Liu, Y.; Chen, J.; Huang, C.; Tu, T. ACS Catal. 2015, 5, 6573.
(e) Kaneda, K.; Mizugaki, T. Green Chem. 2019, 21, 1361.
[4] (a) Lin, W. J. Solid State Chem. 2005, 178, 2486.
(b) Zeng, L.; Guo, X.; He, C.; Duan, C. ACS Catal. 2016, 6, 7935.
(c) Ma, D.; Li, B.; Shi, Z. Chin. Chem. Lett. 2018, 29, 827.
(d) Wang, P.; Deng, L. Chin. J. Chem. 2018, 36, 1222.
(e) Hou, J.; Hao, J.; Wang, Y.; Liu, J. Chem. Res. Chin. Univ. 2019, 35, 860.
(f) Kang, X.-M.; Shi, Y.; Cao, C.-S.; Zhao, B. Sci. China:Chem. 2019, 62, 622.
(g) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.
(h) Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758(in Chinese). (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
(i) Liu, Y.; Xuan, W.; Cui, Y. Adv. Mater. 2010, 22, 4112.
[5] (a) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
(b) Bisbey, R. P.; Dichtel, W. R. ACS Cent. Sci. 2017, 3, 533.
(c) Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681(in Chinese). (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
(d) Liang, R.-R.; Zhao, X. Org. Chem. Front. 2018, 5, 3341.
(e) Yuan, F.; Tan, J.; Guo, J. Sci. China:Chem. 2018, 61, 143.
(f) Wang, T.; Xue, R.; Wei, Y.; Wang, M.; Guo, H.; Yang, W. Prog. Chem. 2018, 30, 753.
(g) Kandambeth, S.; Dey, K.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 1807.
[6] (a) Zhang, Y.; Riduan, S. N. Chem. Soc. Rev. 2012, 41, 2083.
(b) Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Soc. Rev. 2015, 44, 6018.
(c) Kramer, S.; Bennedsen, N. R.; Kegnaes, S. ACS Catal. 2018, 8, 6961.
(d) Wei, Z.; Li, Y.; Wang, J.; Li, H.; Wang, Y. Chin. Chem. Lett. 2018, 29, 815.
(e) Li, C.-Y.; Yan, L.; Wang, W.-L.; Wang, Y.-Q.; Jiang, M.; Ding, Y.-J. Chin. Polym. Bull. 2018, 6, 32(in Chinese). (李存耀, 严丽, 汪文龙, 王玉清, 姜淼, 丁云杰, 高分子通报, 2018, 6, 32.)
(f) Pang, C.; Luo, S.; Hao, Z.; Gao, J.; Huang, Z.; Yu, J.; Yu, S.; Wang, Z. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese). (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
(g) Zhang, T.; Xing, G.; Chen, W.; Chen, L. Mater. Chem. Front. 2020, 4, 332.
(h) Liang, J.; Huang, Y.-B.; Cao, R. Coord. Chem. Rev. 2019, 378, 32.
(i) Zhao, Y.; Ma, W.; Xu, Y.; Zhang, C.; Wang, Q.; Yang, T.; Gao, X.; Wang, F.; Yan, C.; Jiang, J.-X. Macromolecules 2018, 51, 9502.
(j) Yuan, Y.; Huang, H.; Chen, L.; Chen, Y. Macromolecules 2017, 50, 4993.
(k) Kong, S.; Malik, A. U.; Qian, X.; Shu, M.; Xiao, W. Chin. J. Org. Chem. 2018, 38, 656(in Chinese). (孔胜男, Abaid Ullah Malik, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 656.)
(l) Liu, M.; Zhou, B.; Zhou, L.; Xie, Z.; Li, S.; Chen, L. J. Mater. Chem. A 2018, 6, 9860.
(m) Kong, S.; Qian, X.; Shu, M.; Xiao, W. Chin. J. Org. Chem. 2018, 38, 2754(in Chinese). (孔胜男, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 2754.)
(n) Gao, X.; Shu, C.; Zhang, C.; Ma, W.; Ren, S.-B.; Wang, F.; Chen, Y.; Zeng, J. H.; Jiang, J.-X. J. Mater. Chem. A 2020, 8, 2404.
[7] (a) Hennig, H.; Rehorek, D.; Stich, R.; Weber, L. Pure Appl. Chem. 1990, 62, 1489.
(b) Chatterjee, D.; Dasgupta, S. J. Photochem. Photobiol. C 2005, 6, 186.
(c) Zhao, J.; Chen, C.; Ma, W. Top. Catal. 2005, 35, 269.
(d) Tung, C.-H.; Wu, L.-Z.; Zhang, L.-P.; Chen, B. Acc. Chem. Res. 2003, 36, 39.
[8] (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(d) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387.
(e) Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36.
(f) Lang, X.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Acc. Chem. Res. 2014, 47, 355.
(g) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732.
(h) Zhang, X.; Rakesh, K. P.; Ravindar, L.; Qin, H.-L. Green Chem. 2018, 20, 4790.
(i) Jia, K.; Chen, Y. Chem. Commun. 2018, 54, 6105.
(j) Zhang, H.; Yu, S. Chin. J. Org. Chem. 2019, 39, 95(in Chinese). (张昊, 俞寿云, 有机化学, 2019, 39, 95.)
(k) Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
(l) Dai, J.; Lei, W.; Liu, Q. Acta Chim. Sinica 2019, 77, 911(in Chinese). (戴建玲, 雷文龙, 刘强, 化学学报, 2019, 77, 911.)
(m) Liu, Y.-C.; Zheng, X.; Huang, P.-Q. Acta Chim. Sinica 2019, 77, 850(in Chinese). (刘玉成, 郑啸, 黄培强, 化学学报, 2019, 77, 850.)
(n) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39, 3353(in Chinese). (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
(o) Yi, X.; Huang, F.; Baell, J. B.; Huang, H.; Yu, Y. Prog. Chem. 2019, 31, 505.
(p) Wang, T.-X.; Liang, H.-P.; Anito, D. S.; Ding, X.; Han, B.-H. J. Mater. Chem. A 2020, 8, 7003.
[9] Ma, T.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L.-H.; Wang, Y.; Su, J.; Li, J.; Wang, X.; Wang, W. D.; Wang, W.; Sun, J.; Yaghi, O. M. Science 2018, 361, 48.
[10] (a) Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. J. Am. Chem. Soc. 2015, 137, 8352.
(b) Gao, Z.-Z.; Wang, Z.-K.; Wei, L.; Yin, G.; Tian, J.; Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhang, Y.-B.; Li, X.; Liu, Y.; Li, Z.-T. ACS Appl. Mater. Interfaces 2020, 12, 1404.
[11] (a) McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Chem.-Eur. J. 2005, 11, 2610.
(b) McKeown, N. B. Sci. China:Chem. 2017, 60, 1023.
[12] (a) Zhou, Y.-B.; Zhan, Z.-P. Chem.-Asian J. 2018, 13, 9.
(b) He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. Acta Chim. Sinica 2018, 76, 202(in Chinese). (贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76, 202.)
(c) Lee, J.-S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.
[13] (a) Yuan, Y.; Zhu, G. ACS Cent. Sci. 2019, 5, 409.
(b) Yan, T.; Xing, G.; Ben, T.; Qiu, S. Chem. J. Chin. Univ. 2018, 39, 1072(in Chinese). (闫婷婷, 邢国龙, 贲腾, 裘式纶, 高等学校化学学报, 2018, 39, 1072.)
(c) Xia, L.; Zhang, H.; Feng, B.; Yang, D.; Bu, N.; Zhao, Y.; Yan, Z.; Li, Z.; Yuan, Y.; Zhao, X. Chem. J. Chin. Univ. 2019, 40, 2456(in Chinese). (夏立新, 张红翠, 冯彬, 杨东奇, 布乃顺, 赵云波, 闫卓君, 李樟楠, 元野, 赵晓君, 高等学校化学学报, 2019, 40, 2456.)
(d) Ben, T.; Qiu, S. CrystEngComm 2013, 15, 17.
[14] (a) Hou, S.; Tan, B. Macromolecules 2018, 51, 2923.
(b) Gao, H.; Ding, L.; Bai, H.; Li, L. ChemSusChem 2017, 10, 618.
(c) Tan, L.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.
[15] (a) Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C.-G.; Han, B.-H. J. Am. Chem. Soc. 2012, 134, 6084.
(b) Chen, Q.; Han, B.-H. Macromol. Rapid Commun. 2018, 39, 1800040.
[16] Su, C.; Tandiana, R.; Tian, B.; Sengupta, A.; Tang, W.; Su, J.; Loh, K. P. ACS Catal. 2016, 6, 3594.
[17] (a) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
(b) Yuan, W.; Yang, H.; Zhang, M.; Hu, D.; Wan, S.; Li, Z.; Shi, C.; Sun, N.; Tao, Y.; Huang, W. Chin. Chem. Lett. 2019, 30, 1955.
(c) Bi, K.; Tan, R.; Hao, R.; Miao, L.; He, Y.; Wu, X.; Zhang, J.; Rui, X. Chin. Chem. Lett. 2019, 30, 545.
(d) Li, J.; Grimsdale, A. C. Chem. Soc. Rev. 2010, 39, 2399.
[18] Luo, J.; Zhang, X.; Zhang, J. ACS Catal. 2015, 5, 2250.
[19] (a) Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Org. Biomol. Chem. 2019, 17, 6936.
(b) Chen, X.; Chen, J.; Bao, Z.; Yang, Q.; Yang, Y.; Ren, Q.; Zhang, Z. Chin. J. Org. Chem. 2019, 39, 1681(in Chinese). (陈晓玲, 陈静雯, 鲍宗必, 杨启炜, 杨亦文, 任其龙, 张治国, 有机化学, 2019, 39, 1681.)
(c) Huang, W.; Cheng, X. Synlett 2017, 28, 148.
[20] Zhi, Y.; Yao, Z.; Jiang, W.; Xia, H.; Shi, Z.; Mu, Y.; Liu, X. ACS Appl. Mater. Interfaces 2019, 11, 37578.
[21] Zhi, Y.; Li, K.; Xia, H.; Xue, M.; Mu, Y.; Liu, X. J. Mater. Chem. A 2017, 5, 8697.
[22] Luo, J.; Lu, J.; Zhang, J. J. Mater. Chem. A 2018, 6, 15154.
[23] (a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.
(b) Wang, H.; Zheng, C.; Zhao, G. Chin. J. Chem. 2019, 37, 1111.
(c) Ye, J.; Huang, P. Chin. J. Org. Chem. 2018, 38, 2215(in Chinese). (叶剑良, 黄培强, 有机化学, 2018, 38, 2215.)
(d) Cao, W.; Liu, X.; Feng, X. Chin. Chem. Lett. 2018, 29, 1201.
[24] Luo, J.; Zhang, X.; Lu, J.; Zhang, J. ACS Catal. 2017, 7, 5062.
[25] Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China:Chem. 2019, 62, 24.
[26] Feng, L.-J.; Chen, Q.; Zhu, J.-H.; Liu, D.-P.; Zhao, Y.-C.; Han, B.-H. Polym. Chem. 2014, 5, 3081.
[27] Zhang, J.; Chen, W.; Rojas, A. J.; Jucov, E. V.; Timofeeva, T. V.; Parker, T. C.; Barlow, S.; Marder, S. R. J. Am. Chem. Soc. 2013, 135, 16376.
[28] Li, R.; Byun, J.; Huang, W.; Ayed, C.; Wang, L.; Zhang, K. A. I. ACS Catal. 2018, 8, 4735.
[29] Wang, Z. J.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I. J. Mater. Chem. A 2014, 2, 18720.
[30] Wang, Z. J.; Li, R.; Landfester, K.; Zhang, K. A. I. Polymer 2017, 126, 291.
[31] Li, R.; Wang, Z.-J.; Wang, L.; Ma, B. C.; Ghasimi, S.; Lu, H.; Landfester, K.; Zhang, K. A. I. ACS Catal. 2016, 6, 1113.
[32] Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F. Angew. Chem., Int. Ed. 2013, 52, 1432.
[33] Li, R.; Ma, B. C.; Huang, W.; Wang, L.; Wang, D.; Lu, H.; Landfester, K.; Zhang, K. A. I. ACS Catal. 2017, 7, 3097.
[34] Lu, J.; Khetrapal, N. S.; Johnson, J. A.; Zeng, X. C.; Zhang, J. J. Am. Chem. Soc. 2016, 138, 15805.
[35] Zhi, Y.; Ma, S.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. Appl. Catal. B 2019, 244, 36.
[36] Wu, W.; Xu, S.; Qi, G.; Zhu, H.; Hu, F.; Liu, Z.; Zhang, D.; Liu, B. Angew. Chem., Int. Ed. 2019, 58, 3062.
[37] Xu, W.; Dai, X.; Xu, H.; Weng, J. Chin. J. Org. Chem. 2018, 38, 2807(in Chinese). (徐雯秀, 戴小强, 徐涵靖, 翁建全, 有机化学, 2018, 38, 2807.)
[38] Jiang, J.-X.; Li, Y.; Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.
[39] Li, X.; Zhang, Y. C.; Zhao, Y.; Zhao, H. P.; Zhang, B.; Cai, T. Macromolecules 2020, 53, 1550.
[40] (a) Wang, S.; Song, K.; Zhang, C.; Shu, Y.; Li, T.; Tan, B. J. Mater. Chem. A 2017, 5, 1509.
(b) Dou, Z.; Xu, L.; Zhi, Y.; Zhang, Y.; Xia, H.; Mu, Y.; Liu, X. Chem.-Eur. J. 2016, 22, 9919.
[41] Liu, X.; A, S.; Zhang, Y.; Luo, X.; Xia, H.; Li, H.; Mu, Y. RSC Adv. 2014, 4, 6447.
[42] Li, Y.; Sun, B.; Zhou, Y.; Yang, W. Appl. Organomet. Chem. 2017, 31, 3578.
[43] Jiang, J.; Luo, R.; Zhou, X.; Chen, Y.; Ji, H. Adv. Synth. Catal. 2018, 360, 4402.
[44] (a) Cohen, S. M. Chem. Rev. 2012, 112, 970.
(b) Cohen, S. M. J. Am. Chem. Soc. 2017, 139, 2855.
[45] Monterde, C.; Navarro, R.; Iglesias, M.; Sánchez, F. ACS Appl. Mater. Interfaces 2019, 11, 3459.
[46] Liras, M.; Pintado-Sierra, M.; Iglesias, M.; Sánchez, F. J. Mater. Chem. A 2016, 4, 17274.
[47] Li, L.; Cui, W.; Su, W.; Wang, Y.; Wang, R. Nano Res. 2016, 9, 779.
[48] (a) Angerani, S.; Winssinger, N. Chem.-Eur. J. 2019, 25, 6661.
(b) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
(c) Wu, Y.-P.; Yan, M.; Gao, Z.-Z.; Hou, J.-L.; Wang, H.; Zhang, D.-W.; Zhang, J.; Li, Z.-T. Chin. Chem. Lett. 2019, 30, 1383.
(d) Naumann, R.; Goez, M. Green Chem. 2019, 21, 4470.
[49] Xie, Z.; Wang, C.; deKraffit, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 2056.
[50] Liang, H.-P.; Chen, Q.; Han, B.-H. ACS Catal. 2018, 8, 5313.
[51] Xu, Z.-Y.; Luo, Y.; Zhang, D.-W.; Wang, H.; Sun, X.-W.; Li, Z.-T. Green Chem. 2020, 22, 136.
[52] Xue, F.; Wang, F.-L.; Liu, J.-Z.; Di, J.-M.; Liao, Q.; Lu, H.-F.; Zhu, M.; He, L.-P.; He, H.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y. Angew. Chem., Int. Ed. 2018, 57, 6667.
[53] Luo, Y.; Xu, Z.-Y.; Wang, H.; Sun, X.-W.; Li, Z.-T.; Zhang, D.-W. ACS Macro Lett. 2020, 9, 90.
[54] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
文章导航

/